(Provided by the Applicant): Moving cancer treatments out of specialized centers and into local clinics or home care could significantly lower healthcare costs. Often patients have to travel large distances to receive treatments at cancer centers. In low resource settings in the developing world, there may not be any options at all for cancer treatment. Surgical treatments carry infection risks and in many places there are not enough surgeons to treat all of the patients in need. Technologies like targeted ultrasound and light based treatments could allow providers with less training to treat more patients for less money. Tools for monitoring chemotherapy patients at home between treatments could eliminate travel and office visits. Mobile health strategies for collecting data about high-risk populations could lead o new interventions to directly impact cancer screening rates. To address these issues, we will form an integrated Center focused on the identification, prototyping and early clinical assessment of innovative point of care technologies for the treatment, screening, diagnosis and monitoring of cancers. We plan to leverage the existing infrastructure at Boston University to assess early stage technologies in terms of clinical needs, market demands, setting appropriateness and commercialization strategies. We have built an integrated multidisciplinary team consisting of engineers, clinicians, public health practitioners, and technology transfer experts. This team will evaluate technologies in various stages of development for their suitability across a range of primary care and non-traditional healthcare settings. Further, we wil take under advisement the needs of patients and patient advocates by including representatives from these groups on our external advisory board and in training and outreach activities. The Center will comprise an Administrative Core, a Clinical Needs Assessment and Impact Analysis Core, a Training Core and a Prototype Development and Testing Core divided into two parts, the Alpha and Beta Cores, that will both be available to Center projects, depending on the stage of technology development.

Public Health Relevance

(Provided by the Applicant): According to the National Cancer Institute, the economic burden of cancer care in 2008 in the U.S. was $124 billion. Screening for colorectal, breast and cervical cancers are universally considered cost effective. Reducing the cost of these screens by bringing them to the POC, and development of new POC early detection methods and treatments has potential to save lives, improve patient care and lower healthcare costs.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-D (M2))
Program Officer
Korte, Brenda
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Boston University
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Bhadra, Sanchita; Ellington, Andrew D (2014) A Spinach molecular beacon triggered by strand displacement. RNA 20:1183-94
Bhadra, Sanchita; Codrea, Vlad; Ellington, Andrew D (2014) G-quadruplex-generating polymerase chain reaction for visual colorimetric detection of amplicons. Anal Biochem 445:38-40
Byrom, Michelle; Bhadra, Sanchita; Jiang, Yu Sherry et al. (2014) Exquisite allele discrimination by toehold hairpin primers. Nucleic Acids Res 42:e120
Scida, Karen; Li, Bingling; Ellington, Andrew D et al. (2013) DNA detection using origami paper analytical devices. Anal Chem 85:9713-20