CORE A: ADMINISTRATIVE The Administrative Core will be responsible for the overall scientific, fiscal, and administrative leadership of the LIPID MAPS Consortium including cores, bridges and Participating Investigators. It will also be responsible for arranging and leading the meetings of the Advisory Committee, Steering Committee, and Operating Committee as well as meetings of Participating Investigators and other scientists working in the field of lipid metabolism. The Administrative Core will track the progress of all studies and will keep the P.I. appraised of their status. It will conduct biweekly video conferences in which the cores and bridges will present quarterly progress reports, and the Operating Committee will discuss any issues facing the Consortium. Lipids play important roles in normal physiological function and in many diseases. Determining how lipid levels and species change during the course of disease and in response to various pharmacological interventions will increase our understanding of disease processes and enhance our ability to develop effective new treatments. The Administrative Core will organize and facilitate the achievement of these aims by the LIPID MAPS Initiative.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54GM069338-10
Application #
8382513
Study Section
Special Emphasis Panel (ZGM1-CBB-5)
Project Start
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
10
Fiscal Year
2012
Total Cost
$447,088
Indirect Cost
$90,416
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Eichler, Jerry; Guan, Ziqiang (2017) Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation. Biochim Biophys Acta 1862:589-599
Merrill Jr, Alfred H; Sullards, M Cameron (2017) Opinion article on lipidomics: Inherent challenges of lipidomic analysis of sphingolipids. Biochim Biophys Acta 1862:774-776
Bowden, John A; Heckert, Alan; Ulmer, Candice Z et al. (2017) Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lipid Res 58:2275-2288
Sandoval-Calderón, Mario; Guan, Ziqiang; Sohlenkamp, Christian (2017) Knowns and unknowns of membrane lipid synthesis in streptomycetes. Biochimie 141:21-29
Vences-Guzmán, Miguel Ángel; Paula Goetting-Minesky, M; Guan, Ziqiang et al. (2017) 1,2-Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway. Mol Microbiol 103:896-912
Elharar, Yifat; Podilapu, Ananda Rao; Guan, Ziqiang et al. (2017) Assembling Glycan-Charged Dolichol Phosphates: Chemoenzymatic Synthesis of a Haloferax volcanii N-Glycosylation Pathway Intermediate. Bioconjug Chem 28:2461-2470
Adams, Hannah M; Joyce, Luke R; Guan, Ziqiang et al. (2017) Streptococcus mitis and S. oralis Lack a Requirement for CdsA, the Enzyme Required for Synthesis of Major Membrane Phospholipids in Bacteria. Antimicrob Agents Chemother 61:
Bonnington, Katherine E; Kuehn, Meta J (2016) Outer Membrane Vesicle Production Facilitates LPS Remodeling and Outer Membrane Maintenance in Salmonella during Environmental Transitions. MBio 7:
Dennis, Edward A (2016) Liberating Chiral Lipid Mediators, Inflammatory Enzymes, and LIPID MAPS from Biological Grease. J Biol Chem 291:24431-24448
Gupta, Shakti; Kihara, Yasuyuki; Maurya, Mano R et al. (2016) Computational Modeling of Competitive Metabolism between ?3- and ?6-Polyunsaturated Fatty Acids in Inflammatory Macrophages. J Phys Chem B 120:8346-53

Showing the most recent 10 out of 383 publications