The overarching goal of the Membrane Protein Structural Dynamics Consortium (MPSD) to break new ground toward a comprehensive understanding of membrane protein systems requires a new organizafional model permitting a fight integrafion of structural, dynamical and funcfional data together with theory, modeling and simulafions. Communication plays a key role in this organization. The crucial step is to ensure that all scientific results, new technologies, and novel advances are communicated in real time and in a """"""""user-friendly"""""""" form among the members of the Consortium, as well as to the broader community. No matter how great the science, if it's not communicated it has little benefit to the goals of MPSD. For this reason, the combined Information/Dissemination (B/C) Core is a central element of a robust strategy toward productivity and success. In the proposed organizafional scheme, the Website is the central conduit for the dissemination of information relating to the Consortium. It will focus on describing ongoing research- both progress and problems, ongoing educational activities, as well as providing a direct link to the databases, technologies, and services from the Scientific Resource Cores. In addition, it will chronicle the set of activities that contribute to promoting communications and the dissemination of knowledge, expertise and training in membrane biophysics to the scientific community beyond the researchers and institutions within. These include the Annual retreat with all the Center members. Scientific conferences and workshops, a E-Newsletter that will interface with the Press to relate the activities within the MPSD and articulate our vision and progress.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54GM087519-03
Application #
8381533
Study Section
Special Emphasis Panel (ZGM1-CBB-3)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
3
Fiscal Year
2012
Total Cost
$1,604,157
Indirect Cost
$415,725
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Camara, Amadou K S; Zhou, YiFan; Wen, Po-Chao et al. (2017) Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol 8:460
Vermaas, Josh V; Tajkhorshid, Emad (2017) Differential Membrane Binding Mechanics of Synaptotagmin Isoforms Observed in Atomic Detail. Biochemistry 56:281-293
Kubota, Tomoya; Correa, Ana M; Bezanilla, Francisco (2017) Mechanism of functional interaction between potassium channel Kv1.3 and sodium channel NavBeta1 subunit. Sci Rep 7:45310
Su, Chih-Chia; Yin, Linxiang; Kumar, Nitin et al. (2017) Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nat Commun 8:171
van der Cruijsen, Elwin A W; Prokofyev, Alexander V; Pongs, Olaf et al. (2017) Probing Conformational Changes during the Gating Cycle of a Potassium Channel in Lipid Bilayers. Biophys J 112:99-108
Machen, Alexandra J; Akkaladevi, Narahari; Trecazzi, Caleb et al. (2017) Asymmetric Cryo-EM Structure of Anthrax Toxin Protective Antigen Pore with Lethal Factor N-Terminal Domain. Toxins (Basel) 9:
Lee, Elizabeth E L; Bezanilla, Francisco (2017) Biophysical Characterization of Genetically Encoded Voltage Sensor ASAP1: Dynamic Range Improvement. Biophys J 113:2178-2181
Lee, Jumin; Ren, Zhenning; Zhou, Ming et al. (2017) Molecular Simulation and Biochemical Studies Support an Elevator-type Transport Mechanism inĀ EIIC. Biophys J 112:2249-2252
Heo, Paul; Park, Joon-Bum; Shin, Yeon-Kyun et al. (2017) Visualization of SNARE-Mediated Hemifusion between Giant Unilamellar Vesicles Arrested by Myricetin. Front Mol Neurosci 10:93
Chen, Shanshuang; Zhao, Yan; Wang, Yuhang et al. (2017) Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM. Cell 170:1234-1246.e14

Showing the most recent 10 out of 245 publications