The four peptide segments or """"""""motifs"""""""" which form the active site position the conserved Asp nucleophile, Asp acid/base, the Lys/Arg and Ser/Thr phosphate-binding residues and the Mg^* cofactor Asp/Glu binding residues (Figure IB). These residues, in combination with the scaffold main-chain elements, form a steric and electrostatic mold that stabilizes the trigonal bipyramidal transition states/intermediates produced along the reaction pathway (Figure 1B) [7]. The HAD phosphatase substrate recognition elements are located in either a cap domain (as in HAD classes C1 and C2, also known as Type I and Type 11) tethered to the core domain by a solvated linker, or in short loop/helical segments that extend from the core domain (as in the """"""""capless"""""""" HAD class CO also known as Type III) (Figure 1A) [8]. Although HAD phosphatases possess the same catalytic site and proceed through the same second partial reaction, they are able to use the specific structural requirements of the substrate-binding step and the subsequent addition-elimination steps of the first partial reaction to discriminate between the physiological substrate and other phosphorylated species (macromolecules and metabolites). The induced fit model, wherein substrate binding is followed by cap domain or loop closure, applies to most HAD phosphatases. Favorable electrostatic interaction between the substrate leaving group and the cap domain/gating loops will contribute to the substrate-binding affinity. For efficient turnover, the phosphoryl group must be bound in the correct orientation within the catalytic site. If the substrate-leaving group is too large or too small, nonproductive binding is likely to occur. Thus, the size, shape and electrostatic surface ofthe active site region that extends from the catalytic site to the active site entrance can provide significant insight into the identity of the physiological substrate. This serves as the basis for the use of virtual screening (made possible by the Structure Core and Computation Core) to identify candidates for the physiological substrate herein. Substrate specificities defined by experimental activity screens suggest that the typical HAD phosphatase has loose substrate specificity coupled with modest catalytic efficiency. Thus, activity screens alone often cannot identify the actual physiological substrate. Rather, they provide candidates that can be further interrogated using the tools provided by the Sequence/Genome Analysis Core and Microbiology Core.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-PPBC-3)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
United States
Zip Code
Gerlt, John A (2017) Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions. Biochemistry 56:4293-4308
Koo, Byoung-Mo; Kritikos, George; Farelli, Jeremiah D et al. (2017) Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. Cell Syst 4:291-305.e7
Thiaville, Jennifer J; Flood, Jake; Yurgel, Svetlana et al. (2016) Members of a Novel Kinase Family (DUF1537) Can Recycle Toxic Intermediates into an Essential Metabolite. ACS Chem Biol 11:2304-11
Grabowski, Marek; Niedzialkowska, Ewa; Zimmerman, Matthew D et al. (2016) The impact of structural genomics: the first quindecennial. J Struct Funct Genomics 17:1-16
Zhang, Xinshuai; Carter, Michael S; Vetting, Matthew W et al. (2016) Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc Natl Acad Sci U S A 113:E4161-9
Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C Dale (2016) Absolute Configuration of Hydroxysqualene. An Intermediate in Bacterial Hopanoid Biosynthesis. Org Lett 18:512-5
Vetting, Matthew W; Bouvier, Jason T; Gerlt, John A et al. (2016) Purification, crystallization and structural elucidation of D-galactaro-1,4-lactone cycloisomerase from Agrobacterium tumefaciens involved in pectin degradation. Acta Crystallogr F Struct Biol Commun 72:36-41
Machovina, Melodie M; Usselman, Robert J; DuBois, Jennifer L (2016) Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations. J Biol Chem 291:17816-28
Yadava, Umesh; Vetting, Matthew W; Al Obaidi, Nawar et al. (2016) Structure of an ABC transporter solute-binding protein specific for the amino sugars glucosamine and galactosamine. Acta Crystallogr F Struct Biol Commun 72:467-72
Ramamoorthy, Gurusankar; Pugh, Mark L; Tian, Bo-Xue et al. (2015) Synthesis and enzymatic studies of bisubstrate analogues for farnesyl diphosphate synthase. J Org Chem 80:3902-13

Showing the most recent 10 out of 82 publications