The primary objective of the Midwest Center for Structural Genomics (MCSG) will be to apply its structure determination pipeline to collaboratively determine the structures of targets nominated by the PSI:Biology Network and the broader biology community. The MCSG will devote a smaller fraction of its effort to contribute, together with its PSl colleagues, to a broader coverage of protein fold space by targeting proteins whose structures would provide the greatest insight into the relationships between sequence and structure. Finally, the MCSG will continue to drive three scientific programs: proteins associated with virulence in human pathogens, proteins overrepresented and associated with disease in human microbiomes and proteins involved in signaling and transcription regulation - an area we are already pursuing in collaboration with leaders in the scientific community. As part of its mandate, the MCSG will also continue to develop and improve technology, and to refine rapid, highly integrated, and cost-effective methods for de novo structure determination by X-ray crystallography using high-performance beamlines at third-generation synchrotron X- ray sources. Our ultimate goal is to build, together with our PSl colleagues, a foundation for 21st century structural biology where the structures of virtually any protein or protein complex will be available to the biology community through the Protein Data Bank. MCSG will achieve these goals by implementing and refining rapid, highly integrated and cost effective methods for structure determination by X-ray crystallography at 3rd generation synchrotrons. We will continue development of advanced data management systems and databases that are vital to the primary mission. The MCSG established a structure determination platform that include: (1) classifying all available genomic sequences to establish a prioritized target set, (2) cloning, and expressing genes and gene fragments of microbial and eukaryotic origin, (3) purifying and crystallizing native and derivatized protein for X-ray crystallography, (4) collecting data and determining structures, (5) analyzing structures for fold and function assignment, and homology modeling of related proteins. The platform provides for rapid model validation and deposition in PDB. In PSI:Biology, these steps will be further advanced and integrated using LIMs and databases into a system capable of determining 200+ structures per year.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
3U54GM094585-02S3
Application #
8462772
Study Section
Special Emphasis Panel (ZGM1-CBB-4 (HT))
Program Officer
Edmonds, Charles G
Project Start
2010-09-01
Project End
2015-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2012
Total Cost
$170,160
Indirect Cost
$20,160
Name
University of Chicago
Department
Type
Organized Research Units
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Grabowski, Marek; Niedzialkowska, Ewa; Zimmerman, Matthew D et al. (2016) The impact of structural genomics: the first quindecennial. J Struct Funct Genomics 17:1-16
Niedzialkowska, Ewa; Gasiorowska, Olga; Handing, Katarzyna B et al. (2016) Protein purification and crystallization artifacts: The tale usually not told. Protein Sci 25:720-33
Cao, Hongnan; Tan, Kemin; Wang, Fengbin et al. (2016) Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate. Struct Dyn 3:034702
Sontag, Ryan L; Nakayasu, Ernesto S; Brown, Roslyn N et al. (2016) Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter. mSystems 1:
Huang, Tingting; Chang, Chin-Yuan; Lohman, Jeremy R et al. (2016) Crystal structure of SgcJ, an NTF2-like superfamily protein involved in biosynthesis of the nine-membered enediyne antitumor antibiotic C-1027. J Antibiot (Tokyo) 69:731-740
Kim, Youngchang; Joachimiak, Grazyna; Bigelow, Lance et al. (2016) How Aromatic Compounds Block DNA Binding of HcaR Catabolite Regulator. J Biol Chem 291:13243-56
Tan, Kemin; Cao, Nan; Cheng, Bokun et al. (2016) Insights from the Structure of Mycobacterium tuberculosis Topoisomerase I with a Novel Protein Fold. J Mol Biol 428:182-93
Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata et al. (2016) A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases. Eur J Med Chem 117:187-96
McGregor, Nicholas; Morar, Mariya; Fenger, Thomas Hauch et al. (2016) Structure-Function Analysis of a Mixed-linkage β-Glucanase/Xyloglucanase from the Key Ruminal Bacteroidetes Prevotella bryantii B(1)4. J Biol Chem 291:1175-97
Rolando, Monica; Escoll, Pedro; Nora, Tamara et al. (2016) Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc Natl Acad Sci U S A 113:1901-6

Showing the most recent 10 out of 123 publications