Core C. Bio-informatics and Computing.The overall goal of the Bio-informatics and Computing Core is to provide computational infrastructure,microarray databasing and statistical analyses, and web applications (databasing and data dissemination)for the proposed CNMC Wellstone Center participants. As a proposed Research Resource Core, this Coreis also able to provide such services to the network of Wellstone Centers. The Core has documentedexpertise in all aspects of the proposed functions, and will provide highly specialized expertise to facilitateinformation and data exchange both internally within the Center, and also externally with the musculardystrophy Consortium participants, and the scientific and lay public.
Specific Aim 1. Provide computer hardware and software support to Center investigators via a state-of-theart,dedicated computer network.
Specific Aim 2. Provide bio-informatics support for microarray data generation, data interpretation anddatabasing.
Specific Aim 3. Provide specialized support for all web applications, including support for the CINRG webdatabases, custom web portals for education of both the scientific public, and the lay public on the researchin the Center.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD053177-04
Application #
7706930
Study Section
Special Emphasis Panel (ZNS1-SRB-S (08))
Project Start
2008-07-01
Project End
2010-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
4
Fiscal Year
2008
Total Cost
$448,749
Indirect Cost
Name
Children's Research Institute
Department
Type
DUNS #
143983562
City
Washington
State
DC
Country
United States
Zip Code
20010
Jain, Harsh V; Boehler, Jessica F; Nagaraju, Kanneboyina et al. (2018) Synthesis, Characterization, and Function of an RNA-Based Transfection Reagent. Curr Protoc Nucleic Acid Chem 72:4.81.1-4.81.29
Anderson, Julia; Seol, Haeri; Gordish-Dressman, Heather et al. (2017) Interleukin 1 Receptor-Like 1 Protein (ST2) is a Potential Biomarker for Cardiomyopathy in Duchenne Muscular Dystrophy. Pediatr Cardiol 38:1606-1612
Jain, H V; Boehler, J F; Verthelyi, D et al. (2017) An amphipathic trans-acting phosphorothioate RNA element delivers an uncharged phosphorodiamidate morpholino sequence in mdx mouse myotubes. RSC Adv 7:42519-42528
Echigoya, Yusuke; Lim, Kenji Rowel Q; Trieu, Nhu et al. (2017) Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy. Mol Ther 25:2561-2572
Coley, William D; Bogdanik, Laurent; Vila, Maria Candida et al. (2016) Effect of genetic background on the dystrophic phenotype in mdx mice. Hum Mol Genet 25:130-45
Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree et al. (2016) Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients. Rheumatology (Oxford) 55:1673-80
Vila, Maria Candida; Klimek, Margaret Benny; Novak, James S et al. (2015) Elusive sources of variability of dystrophin rescue by exon skipping. Skelet Muscle 5:44
Hathout, Yetrib; Brody, Edward; Clemens, Paula R et al. (2015) Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 112:7153-8
Bello, Luca; Kesari, Akanchha; Gordish-Dressman, Heather et al. (2015) Genetic modifiers of ambulation in the Cooperative International Neuromuscular Research Group Duchenne Natural History Study. Ann Neurol 77:684-96
Dillingham, Blythe C; Benny Klimek, Margaret E; Gernapudi, Ramkishore et al. (2015) Inhibition of inflammation with celastrol fails to improve muscle function in dysferlin-deficient A/J mice. J Neurol Sci 356:157-62

Showing the most recent 10 out of 64 publications