PILOT PROJECT Endometriosis is one of the most common gynecologic disorders, affecting 10-15% of all reproductive age women, and specifically in 50-60% of women with chronic pelvic pain and infertility. Women with endometriosis have lower conception rates spontaneously or with assisted reproductive technologies. The cost of endometriosis to the U.S. healthcare system was $22 billion in 2002. Current options for women with endometriosis are limited to temporizing symptoms with either medical or surgical treatments. Retrograde menstruation was hypothesized as the primary cause. Molecular studies suggested that altered expression of regulatory genes in the eutopic endometrial tissue promotes implantation and growth of the ectopic endometrial cells. However, little is known about the changes in cellular function in the cellular components of the endometrium leading to the manifestation of endometriosis. Additionally, aberrant molecular pathways associated with endometriosis remain to be defined. Thus, there is a current gap of knowledge at both the cellular and molecular levels impeding the advancement of endometriosis research. Our long term goal is to identify the molecular pathways that promote endometriosis within each functional endometrial cell lineage and apply this knowledge to the development of novel and effective treatments for patients. Our current objective is to define the changes in cellular function in the individual endometrial cell lineage within the endometrium that promote endometriosis and to identify the lineage specific aberrant molecular pathways associated with this disease.
Our aims are 1) to define the changes in cellular function of individual endometrial cell lineage that contribute to the pathogenesis of endometriosis using a mouse transplantation model that allows transplantation of mixtures of singly dissociated endometrial cells and 2) to identify and validate lineage-specific aberrant molecular pathways associated with endometriosis using paired mRNA/mlRNA profiles of highly purified lineage-specific primary and transplanted endometrial cells.

Public Health Relevance

The results from this proposal will define the aberrant molecular pathways and their mediated functional changes most relevant to the manifestation of endometriosis. This will provide a foundation for future studies on the impact of fertility and into the development of targeted therapies for disease-associated infertility and poor pregnancy outcomes in women with endometriosis - a major benefit for the public health.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
2U54HD055764-06
Application #
8286514
Study Section
Special Emphasis Panel (ZHD1-DSR-L (50))
Project Start
2012-04-01
Project End
2017-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
6
Fiscal Year
2012
Total Cost
$135,695
Indirect Cost
$47,867
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Houshdaran, Sahar; Zelenko, Zara; Irwin, Juan C et al. (2014) Human endometrial DNA methylome is cycle-dependent and is associated with gene expression regulation. Mol Endocrinol 28:1118-35
Chen, Joseph C; Johnson, Brittni A; Erikson, David W et al. (2014) Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts. Hum Reprod 29:1255-70
Lin, Chih-Jen; Koh, Fong Ming; Wong, Priscilla et al. (2014) Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev Cell 30:268-79
Romero, Roberto; Dey, Sudhansu K; Fisher, Susan J (2014) Preterm labor: one syndrome, many causes. Science 345:760-5
Piltonen, T T; Chen, J; Erikson, D W et al. (2013) Mesenchymal stem/progenitors and other endometrial cell types from women with polycystic ovary syndrome (PCOS) display inflammatory and oncogenic potential. J Clin Endocrinol Metab 98:3765-75
Judson, Robert L; Greve, Tobias S; Parchem, Ronald J et al. (2013) MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nat Struct Mol Biol 20:1227-35
Afshar, Yalda; Hastings, Julie; Roqueiro, Damian et al. (2013) Changes in eutopic endometrial gene expression during the progression of experimental endometriosis in the baboon, Papio anubis. Biol Reprod 88:44
Lin, Chih-Jen; Conti, Marco; Ramalho-Santos, Miguel (2013) Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development 140:3624-34
Chen, Li; Faire, Mehlika; Kissner, Michael D et al. (2013) Primordial germ cells and gastrointestinal stromal tumors respond distinctly to a cKit overactivating allele. Hum Mol Genet 22:313-27
Sachs, Michael; Onodera, Courtney; Blaschke, Kathryn et al. (2013) Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline inýývivo. Cell Rep 3:1777-84

Showing the most recent 10 out of 56 publications