Project 2 will expand our knowledge of FSHD biomarkers to enable identification of FSHD disease genes and genetic and epigenetic mechanisms responsible for FSHD muscle pathology, and facilitate pre-clinical studies to develop FSHD therapeutics.
In Aim 1, biomarkers for FSHD will be identified and validated using whole transcriptome sequencing (RNA-seq) and qRT-PCR analyses of muscle and myogenic cells from affected and unaffected subjects in FSHD family cohorts and in nonmanifesting carriers. Our large collection of muscle and cells available in the Cell Core will enable statistically powered studies to identify quantitative differences in the expression of coding and non-coding RNAs and splicing variants and candidate modifiers of disease severity, also being investigated in Project 1 by exome sequencing. The expression and functions of candidate disease biomarkers and modifier genes and their encoded proteins will be investigated in FSHD cells (Aim 1) and humanized mouse xenograft models (Project 3), and by using morpholino antisense inhibition to evaluate their functions in FSHD pathophysiology (Aim 3).
Aim 2 will investigate epigenetic and regulatory mechanisms controlling the expression of DUX4-fl and non-coding RNAs transcribed from the D4Z4 FSHD disease locus. Investigations focus on nonmanifesting carriers and unaffected members of FSHD families to test the hypothesis that disruptions in the DNA methylation status of the D4Z4 locus are early modifiers of genetic and regulatory disruptions leading to FSHD disease.
Aim 3 is a collaboration with our industry partner, Genzyme, to develop antisense oligo morpholino technology for investigating the disease functions of DUX4-fl and other candidate FSHD disease genes identified in Aim 1. The initial objectives are to develop and validate DUX4-fl morpholinos for RNA-seq studies to identify downstream targets of DUX4-fl regulation in FSHD cells as candidate FSHD disease genes. Cell morpholino studies will enable use of morpholinos in pre-clinical drug development studies in humanized mouse xenograft models in Project 3 to investigate the roles of DUX4-fl and other candidate disease genes in FSHD muscle pathophysiology.

Public Health Relevance

A complete molecular signature of FSHD disease provides biomarker tools for investigating and understanding the underlying genetic, epigenetic and pathophysiological mechanisms responsible for FSHD muscle disease, for development therapeutics in pre-clinical studies, and for monitoring efficacy of therapeutic agents in clinical trials

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-S (57))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Massachusetts Medical School Worcester
United States
Zip Code
Zhang, Yuanfan; King, Oliver D; Rahimov, Fedik et al. (2014) Human skeletal muscle xenograft as a new preclinical model for muscle disorders. Hum Mol Genet 23:3180-8
Mitsuhashi, Hiroaki; Mitsuhashi, Satomi; Lynn-Jones, Taylor et al. (2013) Expression of DUX4 in zebrafish development recapitulates facioscapulohumeral muscular dystrophy. Hum Mol Genet 22:568-77
Rahimov, Fedik; Kunkel, Louis M (2013) The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol 201:499-510
Homma, Sachiko; Chen, Jennifer C J; Rahimov, Fedik et al. (2012) A unique library of myogenic cells from facioscapulohumeral muscular dystrophy subjects and unaffected relatives: family, disease and cell function. Eur J Hum Genet 20:404-10
Homma, Sachiko; Beermann, Mary Lou; Miller, Jeffrey Boone (2011) Peripheral nerve pathology, including aberrant Schwann cell differentiation, is ameliorated by doxycycline in a laminin-?2-deficient mouse model of congenital muscular dystrophy. Hum Mol Genet 20:2662-72
Reed, Patrick W; Bloch, Robert J (2011) Crystallin-gazing: unveiling enzymatic activity. J Neurochem 118:315-6
Roche, Joseph A; Ford-Speelman, Diana L; Ru, Lisa W et al. (2011) Physiological and histological changes in skeletal muscle following in vivo gene transfer by electroporation. Am J Physiol Cell Physiol 301:C1239-50
Rahimov, Fedik; King, Oliver D; Warsing, Leigh C et al. (2011) Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor. Physiol Genomics 43:398-407
Arashiro, Patricia; Eisenberg, Iris; Kho, Alvin T et al. (2009) Transcriptional regulation differs in affected facioscapulohumeral muscular dystrophy patients compared to asymptomatic related carriers. Proc Natl Acad Sci U S A 106:6220-5
Vishnudas, Vivek K; Miller, Jeffrey Boone (2009) Ku70 regulates Bax-mediated pathogenesis in laminin-alpha2-deficient human muscle cells and mouse models of congenital muscular dystrophy. Hum Mol Genet 18:4467-77