The Proteomics, Bioanalysis and Bioinformatics Core is located in downtown Buffalo within the New York State Center of Excellence in Bioinformatics &Life Sciences (CEBLS) ( which is a free-standing facility integral to the University at Buffalo/SUNY and the Buffalo-Niagara Medical Center. Key functional capabilities of this Module are: a) small molecule analysis (drugs, metabolites and endogenous compounds);b) proteomic analysis of tissues from both normal and pathological specimens;and c) bioinformatics applications for creation, management and correlative analysis of large data sets, such as those derived from proteomics analyses, as well as other in silico applications. The kinds of instrumentation and range of capabilities included in this Core facility are state-of-the-art (the State of New York and other entities have invested more than $15 million into the facility and its instrumentation so far), and are not readily available at the other SUNY campuses. Accessibility to this Core will be afforded to support the ongoing and newly emerging research programs covered in this proposal, which requires the kinds of methodologies and analytical capabilities offered by this core. This core will also facilitate ongoing and new collaborations between investigators who are developing novel therapeutic efforts for Retinopathy of Prematurity.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DSR-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Suny Downstate Medical Center
United States
Zip Code
Nouri-Nigjeh, Eslam; Sukumaran, Siddharth; Tu, Chengjian et al. (2014) Highly multiplexed and reproducible ion-current-based strategy for large-scale quantitative proteomics and the application to protein expression dynamics induced by methylprednisolone in 60 rats. Anal Chem 86:8149-57
Tu, Chengjian; Mammen, Manoj Jacob; Li, Jun et al. (2014) Large-scale, ion-current-based proteomics investigation of bronchoalveolar lavage fluid in chronic obstructive pulmonary disease patients. J Proteome Res 13:627-39
An, Bo; Zhang, Ming; Qu, Jun (2014) Toward sensitive and accurate analysis of antibody biotherapeutics by liquid chromatography coupled with mass spectrometry. Drug Metab Dispos 42:1858-66
Tu, Chengjian; Li, Jun; Sheng, Quanhu et al. (2014) Systematic assessment of survey scan and MS2-based abundance strategies for label-free quantitative proteomics using high-resolution MS data. J Proteome Res 13:2069-79
Nouri-Nigjeh, Eslam; Zhang, Ming; Ji, Tao et al. (2014) Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein. Anal Chem 86:3575-84
Qu, Jun; Young, Rebeccah; Page, Brian J et al. (2014) Reproducible ion-current-based approach for 24-plex comparison of the tissue proteomes of hibernating versus normal myocardium in swine models. J Proteome Res 13:2571-84
Gui, Shanying; Gathiaka, Symon; Li, Jun et al. (2014) A remodeled protein arginine methyltransferase 1 (PRMT1) generates symmetric dimethylarginine. J Biol Chem 289:9320-7
Shen, Xiaomeng; Young, Rebeccah; Canty, John M et al. (2014) Quantitative proteomics in cardiovascular research: global and targeted strategies. Proteomics Clin Appl 8:488-505
Chen, Ting; Mager, Donald E; Kagan, Leonid (2013) Interspecies modeling and prediction of human exenatide pharmacokinetics. Pharm Res 30:751-60
Beharry, Kay D; Cai, Charles L; Sharma, Poonam et al. (2013) Hydrogen peroxide accumulation in the choroid during intermittent hypoxia increases risk of severe oxygen-induced retinopathy in neonatal rats. Invest Ophthalmol Vis Sci 54:7644-57

Showing the most recent 10 out of 13 publications