The Neonatal Translational Core is located in at SUNY Downstate Medical Center. The key functional capabilities are: a) animal models for oxygen-induced retinopathy;2) cell culture models for oxidative stress in the retina;c) biochemical analyses;d) gene profiling;and e) immunohistochemistry, immunofluorescence and imaging analyses.
The aims of this core are to promote and foster collaborative research interactions among PIs;establish state-of-the-art translational research training core facility focusing on oxygen-induced retinopathy and oxidative stress for junior faculty, fellows, residents, and research scientists;and recruit basic and clinical investigators into retinopathy research. Accessibility to this Core will be afforded to support the ongoing and newly emerging research programs covered in this proposal, which requires the kinds of methodologies and analytical capabilities offered by this core. This core will also facilitate ongoing and new collaborations between investigators who are developing novel therapeutic efforts for Retinopathy of Prematurity. Each of these services has been extensively used by the Pediatric PIs and there is great demand for these services. Many of the services and/or use of equipment will be free of charge to investigators;these include all molecular services;biochemical services;use of the equipment. In order to access services the following service order forms will be available. For Protocol 1, this core will be responsible for all experimental phases including animal handling, drug administration, hyperoxia/hypoxia cycling, blood and tissue harvesting, sample processing and image analyses in addition to the other cores. For Protocol 2, this core will be responsible for all experimental phases including plating the cells, SiRNA interference, media and cell harvesting, sample processing and image analyses in addition to the other cores. For Protocol 3, the neonatal translational core will analyze all patient blood samples prostaglandins, VEGF, sVEGFR-1, IGF-I and gene profiling of VEGF and Notch signaling in the placenta, cord and blood samples.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD071594-04
Application #
8683207
Study Section
Special Emphasis Panel (ZHD1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Suny Downstate Medical Center
Department
Type
DUNS #
City
Brooklyn
State
NY
Country
United States
Zip Code
Beharry, Kay D; Cai, Charles L; Henry, Michael M et al. (2017) Co-Enzyme Q10 and n-3 Polyunsaturated Fatty Acid Supplementation Reverse Intermittent Hypoxia-Induced Growth Restriction and Improved Antioxidant Profiles in Neonatal Rats. Antioxidants (Basel) 6:
Vali, Payam; Chandrasekharan, Praveen; Rawat, Munmun et al. (2017) Evaluation of Timing and Route of Epinephrine in a Neonatal Model of Asphyxial Arrest. J Am Heart Assoc 6:
Tu, Chengjian; Shen, Shichen; Sheng, Quanhu et al. (2017) A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification. J Proteomics 152:276-282
Tu, Chengjian; Mojica, Wilfrido; Straubinger, Robert M et al. (2017) Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients. Proteomics Clin Appl 11:
Tan, Jeffrey J; Cai, Charles L; Shrier, Eric M et al. (2017) Ocular Adverse Effects of Intravitreal Bevacizumab Are Potentiated by Intermittent Hypoxia in a Rat Model of Oxygen-Induced Retinopathy. J Ophthalmol 2017:4353129
Beharry, Kay D; Cai, Charles L; Valencia, Gloria B et al. (2017) Human retinal endothelial cells and astrocytes cultured on 3-D scaffolds for ocular drug discovery and development. Prostaglandins Other Lipid Mediat :
Tu, Chengjian; Li, Jun; Shen, Shichen et al. (2016) Performance Investigation of Proteomic Identification by HCD/CID Fragmentations in Combination with High/Low-Resolution Detectors on a Tribrid, High-Field Orbitrap Instrument. PLoS One 11:e0160160
Beharry, Kay D; Valencia, Gloria B; Lazzaro, Douglas R et al. (2016) Pharmacologic interventions for the prevention and treatment of retinopathy of prematurity. Semin Perinatol 40:189-202
Tu, Chengjian; Bu, Yahao; Vujcic, Marija et al. (2016) Ion Current-Based Proteomic Profiling for Understanding the Inhibitory Effect of Tumor Necrosis Factor Alpha on Myogenic Differentiation. J Proteome Res 15:3147-57
Shen, Shichen; Jiang, Xiaosheng; Li, Jun et al. (2016) Large-Scale, Ion-Current-Based Proteomic Investigation of the Rat Striatal Proteome in a Model of Short- and Long-Term Cocaine Withdrawal. J Proteome Res 15:1702-16

Showing the most recent 10 out of 40 publications