The Administrative Core serves as the nucleus of the IDDRC and provides scientific and administrative leadership. The overarching goal of the Administrative Core is to create an environment in which science relevant to discovery of the causes, consequences, mechanisms and treatments of IDD can be effectively and efficiently designed, conducted and disseminated. The Administrative Core has the following specific objectives: 1. To provide high quality, scientific leadership that helps to produce the best possible research relevant to IDDs through (a) developing superior core facilities that best meet the needs of investigators; (b) recruiting and supporting outstanding investigators that share the IDDRC mission to improve the lives of individuals with IDDs through the conduct of cutting-edge research on the causes, consequences, mechanisms and treatments of these conditions; (c) serving as liaison to other university and outside organizations, including NIH, the IDDRC Network and the community;and, (d) promoting a cohesive, integrated IDDRC, to maximize the combined efforts of our investigators and resources in IDD research - 'a whole greater than the sum of its parts'. 2. To provide outstanding administrative leadership with respect to managing day-to-day operations and maintaining high-quality, cost-effective services throughout the center.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD079124-02
Application #
8740534
Study Section
Special Emphasis Panel (ZHD1-DSR-H)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
$158,882
Indirect Cost
$54,355
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Shnitko, Tatiana A; Mace, Kyla D; Sullivan, Kaitlin M et al. (2017) Use of fast-scan cyclic voltammetry to assess phasic dopamine release in rat models of early postpartum maternal behavior and neglect. Behav Pharmacol 28:648-660
Noel, Jean; Prieto, Juan C; Styner, Martin (2017) FADTTSter: Accelerating Hypothesis Testing With Functional Analysis of Diffusion Tensor Tract Statistics. Proc SPIE Int Soc Opt Eng 10137:
Hare, Stephanie M; Ford, Judith M; Ahmadi, Aral et al. (2017) Modality-Dependent Impact of Hallucinations on Low-Frequency Fluctuations in Schizophrenia. Schizophr Bull 43:389-396
Young, Jeffrey T; Shi, Yundi; Niethammer, Marc et al. (2017) The UNC-Wisconsin Rhesus Macaque Neurodevelopment Database: A Structural MRI and DTI Database of Early Postnatal Development. Front Neurosci 11:29
Decot, Heather K; Namboodiri, Vijay M K; Gao, Wei et al. (2017) Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons. Neuropsychopharmacology 42:615-627
Swanson, Meghan R; Wolff, Jason J; Elison, Jed T et al. (2017) Splenium development and early spoken language in human infants. Dev Sci 20:
Hirsch, Matthew L; Conatser, Laura M; Smith, Sara M et al. (2017) AAV vector-meditated expression of HLA-G reduces injury-induced corneal vascularization, immune cell infiltration, and fibrosis. Sci Rep 7:17840
Wolff, Jason J; Swanson, Meghan R; Elison, Jed T et al. (2017) Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Mol Autism 8:8
Hazlett, Heather Cody; Gu, Hongbin; Munsell, Brent C et al. (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature 542:348-351
Otis, James M; Namboodiri, Vijay M K; Matan, Ana M et al. (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543:103-107

Showing the most recent 10 out of 123 publications