Sensory hypersensitivities are common and distressing feature of the Fragile X Syndrome. This clinical symptom is believed to be associated with neuronal hyperexcitability in neocortex. There are three primary goals of our highly novel and integrated Center program as pursued in Project 3. First, we aim to characterize the neural substrate of auditory sensory hypersensitivities in Fragile X patients using clinical neurophysiology. Second, we will establish mouse-human homologies via parallel 'in vivo'auditory neurophysiology studies in P2 and P3. Third, we will examine neurophysiological effects of single dose administration of minocycline, acamprosate, and lovastatin on resting EEG and auditory evoked responses in patients with FXS, using the same paradigms as in the Fmr1 mouse studies of P2. Auditory sensory responses, repeatedly shown to be highly abnormal in the Fmr1 mouse model and FXS patients, will be analyzed from a bottom-up, local circuit perspective by examining early sensory evoked response amplitudes and habituation to repeated tones. We will also analyze top-down corticocortical control of auditory processing using our recently established talk/listen paradigm. Last, we will perform a time-frequency decomposition of the EEG response to amplitude modulated (AM) chirp stimuli in order to examine local circuit-mediated neural oscillations. For the chirp paradigm, we will focus particularly on higher frequency gamma band activity, which we have found to be highly abnormal in Preliminary Studies in Fragile X as predicted by the neural circuitry model being tested in P1. Data will be examined for correlations between CGG repeat number and gene methylation, and with clinical ratings. Together with the mouse auditory circuit studies in PI &P2, pharmacological studies in P1 &P2, and 'in vivo'mouse auditory processing studies (P2), we will develop a mechanistic understanding of auditory hypersensitivity in Fragile X patients, and more broadly about illness mechanisms and translational strategies for evaluating neuronal hyperexcitability and its clinical impact.

Public Health Relevance

Excessive sensitivity to sounds is a common and distressing symptom of Fragile X Syndrome (FXS). We will use electroencephalography to identify abnormalities in the auditory sensory system in persons with FXS and test 3 medications in reversing these disturbances. Results should further understanding of auditory sensitivity, improve study models from mice to people, and enhance treatment discovery methods for FXS.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DSR-Y (53))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
United States
Zip Code
Ethridge, L E; White, S P; Mosconi, M W et al. (2016) Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry 6:e787
Lovelace, Jonathan W; Wen, Teresa H; Reinhard, Sarah et al. (2016) Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome. Neurobiol Dis 89:126-35
Ouyang, Minhui; Cheng, Hua; Mishra, Virendra et al. (2016) Atypical age-dependent effects of autism on white matter microstructure in children of 2-7 years. Hum Brain Mapp 37:819-32
Takarae, Yukari; Sablich, Savanna R; White, Stormi P et al. (2016) Neurophysiological hyperresponsivity to sensory input in autism spectrum disorders. J Neurodev Disord 8:29
Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K et al. (2015) Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. J Neurosci 35:2015-25
Guo, Weirui; Ceolin, Laura; Collins, Katie A et al. (2015) Elevated CaMKIIα and Hyperphosphorylation of Homer Mediate Circuit Dysfunction in a Fragile X Syndrome Mouse Model. Cell Rep 13:2297-311
Miller, Haylie L; Ragozzino, Michael E; Cook, Edwin H et al. (2015) Cognitive set shifting deficits and their relationship to repetitive behaviors in autism spectrum disorder. J Autism Dev Disord 45:805-15
Najjar, Fedra; Owley, Thomas; Mosconi, Matthew W et al. (2015) Pharmacogenetic Study of Serotonin Transporter and 5HT2A Genotypes in Autism. J Child Adolesc Psychopharmacol 25:467-74
Mosconi, Matthew W; Wang, Zheng; Schmitt, Lauren M et al. (2015) The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 9:296
Amodeo, Dionisio A; Jones, Joshua H; Sweeney, John A et al. (2014) Risperidone and the 5-HT2A receptor antagonist M100907 improve probabilistic reversal learning in BTBR T + tf/J mice. Autism Res 7:555-67