We propose to operate a state-of-the-art genome center to serve the scientific community. The Center will: (i) Have the flexible capability to produce a wide range of high-quality sequencing products - including whole-genome resequencing, whole-exome resequencing, de novo genome assembly, whole-transcriptome analysis, and epigenomic sequencing; (ii) Have the experience and ability to design, execute and analyze a wide range of scientific projects - including in medical genetics, cancer genomics, vertebrates genomics, microbial genomics and epigenomic analyses; (iii) Advance the state-of-the-art of sequencing - including by decreasing costs, developing new applications and pioneering new sequencing technologies;and (iv) Serve as a scientific resource for the biomedical community - including by creating and teaching courses, interacting with the research community to help with project design and working with the medical community to adapt protocols to clinical settings.

Public Health Relevance

The Center's program will accelerate biomedical research, including through systematic identification of genes responsible for inherited diseases, genes recurrently mutated in cancer, functional elements encoded in the human genome, and microbes that interact with humans in health and disease. The knowledge will be made rapidly and freely available to the scientific community. It will provide a foundation for efforts to develop understand disease mechanisms and to develop approaches to prevention, diagnosis and therapy.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
3U54HG003067-10S1
Application #
8508360
Study Section
Special Emphasis Panel (ZHG1-HGR-P (O2))
Program Officer
Felsenfeld, Adam
Project Start
2003-11-10
Project End
2015-10-31
Budget Start
2011-11-01
Budget End
2012-10-31
Support Year
10
Fiscal Year
2012
Total Cost
$10,480,393
Indirect Cost
$530,178
Name
Broad Institute, Inc.
Department
Type
DUNS #
623544785
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Camargo, M Constanza; Bowlby, Reanne; Chu, Andy et al. (2016) Validation and calibration of next-generation sequencing to identify Epstein-Barr virus-positive gastric cancer in The Cancer Genome Atlas. Gastric Cancer 19:676-81
Ceccarelli, Michele; Barthel, Floris P; Malta, Tathiane M et al. (2016) Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 164:550-63
Hamilton, Eileen P; Kapusta, Aurélie; Huvos, Piroska E et al. (2016) Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. Elife 5:
Li, Hongda; Bielas, Stephanie L; Zaki, Maha S et al. (2016) Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly. Am J Hum Genet 99:501-10
Ghaoui, Roula; Palmio, Johanna; Brewer, Janice et al. (2016) Mutations in HSPB8 causing a new phenotype of distal myopathy and motor neuropathy. Neurology 86:391-8
Beltran, Himisha; Prandi, Davide; Mosquera, Juan Miguel et al. (2016) Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22:298-305
Zaki, Maha S; Bhat, Gifty; Sultan, Tipu et al. (2016) PYCR2 Mutations cause a lethal syndrome of microcephaly and failure to thrive. Ann Neurol 80:59-70
Roosing, Susanne; Romani, Marta; Isrie, Mala et al. (2016) Mutations in CEP120 cause Joubert syndrome as well as complex ciliopathy phenotypes. J Med Genet 53:608-15
Cancer Genome Atlas Research Network; Linehan, W Marston; Spellman, Paul T et al. (2016) Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med 374:135-45
Lek, Monkol; Karczewski, Konrad J; Minikel, Eric V et al. (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285-91

Showing the most recent 10 out of 218 publications