UNIT 3. CHEMISTRY The objective of Unit 3 is to advance Hit compounds to Probes that have sufficient potency, selectivity, physicochemical, and pharmacological properties to be useful as research tools. Our Chemistry Unit uses a full complement of approaches to design and synthesize optimized Probe compounds, including: (1) modern medicinal chemistry;(2) cheminformatics, and computational chemistry and modeling;(3) advanced microfluidic synthesis technology;(4) innovative NMR-based methods for compound optimization utilizing chemical fragment linking strategies;and (5) exploratory pharmacology including in vitro assays that help both triage hits early and assist with the compound optimization process. Altogether, the chemical synthesis and supporting capabilities of the Burnham Center are among the most diverse and advanced of the present MLSCN Centers. This proposal builds on the Chemistry Unit's strong performance during the MLSCN Phase. We describe progress to date and plans to undertake a minimum of 25 Probe production projects annually to improve the potency and optimize the physicochemical properties of Hit compounds, delivering at least 15 new Probes per year.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HG005033-04
Application #
8336976
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
4
Fiscal Year
2011
Total Cost
$4,516,698
Indirect Cost
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Lv, Zongyang; Yuan, Lingmin; Atkison, James H et al. (2018) Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun 9:5145
Pinkerton, Anthony B; Sergienko, Eduard; Bravo, Yalda et al. (2018) Discovery of 5-((5-chloro-2-methoxyphenyl)sulfonamido)nicotinamide (SBI-425), a potent and orally bioavailable tissue-nonspecific alkaline phosphatase (TNAP) inhibitor. Bioorg Med Chem Lett 28:31-34
Pagano, Nicholas; Teriete, Peter; Mattmann, Margrith E et al. (2017) An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors. Bioorg Med Chem 25:6248-6265
Oellrich, Anika; Collier, Nigel; Groza, Tudor et al. (2016) The digital revolution in phenotyping. Brief Bioinform 17:819-30
Ma, Chen-Ting; Sergienko, Eduard A (2016) Time-Resolved Fluorescence Assays. Methods Mol Biol 1439:131-42
Roy, Sudeshna; Ĺ ileikyt?, Justina; Neuenswander, Benjamin et al. (2016) N-Phenylbenzamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore. ChemMedChem 11:283-8
Barak, Larry S; Bai, Yushi; Peterson, Sean et al. (2016) ML314: A Biased Neurotensin Receptor Ligand for Methamphetamine Abuse. ACS Chem Biol 11:1880-90
Rozanov, Dmitri; Cheltsov, Anton; Sergienko, Eduard et al. (2015) TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response. PLoS One 10:e0129566
Lv, Fengping; Li, Zhi-Fang; Hu, Wenhao et al. (2015) Small molecules enhance functional O-mannosylation of Alpha-dystroglycan. Bioorg Med Chem 23:7661-70
Roy, Sudeshna; Ĺ ileikyt?, Justina; Schiavone, Marco et al. (2015) Discovery, Synthesis, and Optimization of Diarylisoxazole-3-carboxamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore. ChemMedChem 10:1655-71

Showing the most recent 10 out of 69 publications