SPECIFIC AIMS Millions of people die or are disabled each year from acute stroke or heart attack, which are caused by the highly localized formation of blood clots resulting in occlusion of the carotid or coronary arteries. In cases where premonitory symptoms or signs of disease indicate the risk of an acute event, a cocktail of various anticoagulants and antiplatelet agents is administered both orally and intravenously to prevent clot progression. Even with the use of aggressive standard-of-care regimens, thrombus formation still proceeds unpredictably. Conversely, severe or fatal bleeding problems can arise with the systemically active anticoagulants in use today. This proposal reflects the belief that safer and more potent agents that exert unique local effects on thrombosis but minimal systemic effects could represent a superior alternative to existing agents for acute use and serve as a bridge to chronic oral therapies. Accordingly, the development of safer and more effective anticoagulants remains both a challenge and an active pursuit for management of the unstable clot-prone atherosclerotic plaques. Our goal is to create a highly potent nanoparticle-based surface active peptidlc inhibitors of thrombin (PPACK/bivalirudin) that remain biologically active at the site of clot formation, yet exhibit minimal system anticoagulant effects a short while after injection so as to limit untoward side effects. Furthermore, we seek to demonstrate a molecular imaging capability to allow early detection and monitoring of the process of thrombus formation and/or dissolution following early therapeutic intervention. We anticipate that the system will find use in acute applications such as prevention of thrombus progression in unstable atherosclerotic plaques, vascular prostheses, indwelling lines, or any other hypercoagulable state that necessitates emergent therapy. We will employ cheap and scalable chemistries in the formulation process, and utilize existing diagnostic modalities (MRI) for demonstration of thrombus detection. The translational potential is apparent because both the quantitative imaging systems and the base nanoparticle formulations already are in clinical trials for carotid artery imaging of angiogenesis. The overall goal of this proposal is to arrive at a stable, safe and effective formulation for a first-in-class nanoparticle based direct thrombin inhibitor with dual antiplatelet functionality whose delivery can be quantified with image-based readouts of the active clotting process. Major initiatives comprise: ? Focus on a predictable and genetically prone animal model of atherosclerosis, ApoE -/- mice, with and without cholesterol feeding to represent a more stable versus more intiamed prothrombotic substrate, respectively, for testing the inhibitors of thrombosis ? Extensive safety testing incorporating immunological and wound healing measures ? Development of multiplexed nanoparticle therapeutics including irreversible (PPACK) and reversible inhibitors of thrombin (bivalirudin) to enhance potency;and testing of various linking strategies for NP ? Testing the system against current standards of care to examine improved benefit and safety profile, including the role of repeat dosing, and establishment of a clinically relevant dosing regimen

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54HL112303-01
Application #
8391995
Study Section
Special Emphasis Panel (ZHL1-CSR-C (F1))
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
1
Fiscal Year
2012
Total Cost
$303,074
Indirect Cost
$103,683
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Vemuri, Chandu; Upadhya, Gundumi A; Arif, Batool et al. (2018) Antithrombin Perfluorocarbon Nanoparticles Improve Renal Allograft Function in a Murine Deceased Criteria Donor Model. Transplant Direct 4:e384
Chinnaraj, Mathivanan; Chen, Zhiwei; Pelc, Leslie A et al. (2018) Structure of prothrombin in the closed form reveals new details on the mechanism of activation. Sci Rep 8:2945
Chakraborty, Pradipta; Acquasaliente, Laura; Pelc, Leslie A et al. (2018) Interplay between conformational selection and zymogen activation. Sci Rep 8:4080
Girard, T J; Grunz, K; Lasky, N M et al. (2018) Re-evaluation of mouse tissue factor pathway inhibitor and comparison of mouse and human tissue factor pathway inhibitor physiology. J Thromb Haemost 16:2246-2257
Wu, Xiaobo; Hutson, Irina; Akk, Antonina M et al. (2018) Contribution of Adipose-Derived Factor D/Adipsin to Complement Alternative Pathway Activation: Lessons from Lipodystrophy. J Immunol 200:2786-2797
Sivaraja, Mohanram; Pozzi, Nicola; Rienzo, Matthew et al. (2018) Reversible covalent direct thrombin inhibitors. PLoS One 13:e0201377
Barranco-Medina, Sergio; Murphy, Mary; Pelc, Leslie et al. (2017) Rational Design of Protein C Activators. Sci Rep 7:44596
Liszewski, M Kathryn; Java, Anuja; Schramm, Elizabeth C et al. (2017) Complement Dysregulation and Disease: Insights from Contemporary Genetics. Annu Rev Pathol 12:25-52
Shen, Guomin; Cui, Weidong; Zhang, Hao et al. (2017) Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer. Nat Struct Mol Biol 24:69-76
Chakraborty, Pradipta; Di Cera, Enrico (2017) Induced Fit Is a Special Case of Conformational Selection. Biochemistry 56:2853-2859

Showing the most recent 10 out of 87 publications