There are two common bottlenecks in the application of genomics to medicine. The first is the availability of well phenotyped, consented populations of sufficient size for productive studies. The second is producing meaningful analyses of the generated genetic data. We are proposing to establish a Genetics and Genomics Core as part of this program project. Such a facility is needed to assist non-geneticist scientists who wish to carry out genetic studies of current patient populations or existing patient samples in repositories. To enhance the efficiency of this process, the Core will serve as a liaison to help more easily navigate the path from idea to gene identification. We anticipate performing 80-100 exomic sequences/year. The advisory role of the Core will be instrumental not only in helping investigators decide if they can expect to generate appropriate data from the samples they have, but also to assist them in the interpretation of data once it is generated. The Core will be directed by myself, with the help of the Scientific Leadership Committee (SLC) and Kathy Liszewski. Though not a trained geneticist, I have been involved in genetic studies increasingly throughout my professional career. Often this role has been interpreting the meaning of these studies in the context of clinical disease and the consequences of mutations or risk SNPs on protein function. However, I have also contributed to the design of both linkage and genome-wide association studies. Thus, the goal of this core is to support investigators studying thrombotic and hemostatic disorders and advise them on the use of targeted resequencing (either of candidate genes or all coding sequences, "the exome") in close collaboration with the GI-WU. The Core's role is critical because the GI-WU is a production and analysis facility. The Core's existing expertise in navigating within this facility as well as experience in study design and interpretation will allow investigators to more easily and efficiently benefit from the resources of the GI-WU, which offers unparalleled economies of scale and experience in analysis. Our Core will support the incorporation of genomic medicine into clinical practice at Washington University for both diagnosis and response to therapy.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54HL112303-01
Application #
8392002
Study Section
Special Emphasis Panel (ZHL1-CSR-C (F1))
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
1
Fiscal Year
2012
Total Cost
$150,728
Indirect Cost
$51,565
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier et al. (2016) Potassium and the K+/H+ Exchanger Kha1p Promote Binding of Copper to ApoFet3p Multi-copper Ferroxidase. J Biol Chem 291:9796-806
Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing et al. (2016) Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy. J Biol Chem 291:18107-16
Wagner, Erin K; Raychaudhuri, Soumya; Villalonga, Mercedes B et al. (2016) Mapping rare, deleterious mutations in Factor H: Association with early onset, drusen burden, and lower antigenic levels in familial AMD. Sci Rep 6:31531
Palekar, Rohun U; Vemuri, Chandu; Marsh, Jon N et al. (2016) Antithrombin nanoparticles inhibit stent thrombosis in ex vivo static and flow models. J Vasc Surg 64:1459-1467
Sanfilippo, K M; Wang, T F; Gage, B F et al. (2016) Incidence of venous thromboembolism in patients with non-Hodgkin lymphoma. Thromb Res 143:86-90
Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico (2016) How the Linker Connecting the Two Kringles Influences Activation and Conformational Plasticity of Prothrombin. J Biol Chem 291:6071-82
Gohara, David W; Di Cera, Enrico (2016) Molecular Mechanisms of Enzyme Activation by Monovalent Cations. J Biol Chem 291:20840-20848
Pozzi, Nicola; Zerbetto, Mirco; Acquasaliente, Laura et al. (2016) Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin. Biochemistry 55:3984-94
Pozzi, N; Di Cera, E (2016) Dual effect of histone H4 on prothrombin activation. J Thromb Haemost 14:1814-8
Eickhoff, Christopher S; Zhang, Xiuli; Vasconcelos, Jose R et al. (2016) Costimulatory Effects of an Immunodominant Parasite Antigen Paradoxically Prevent Induction of Optimal CD8 T Cell Protective Immunity. PLoS Pathog 12:e1005896

Showing the most recent 10 out of 71 publications