The broad objective of the University of Utah Molecular Medicine Translation Research Center in Thrombosis (U2M2-TRCT) is to dissect novel clinical and molecular determinants of thrombotic risk in patients with metabolic disorders (obesity, diabetes, and the metabolic syndrome). The U2M2-TRCT unites a group of basic and clinical investigators with breadth and expertise in thrombosis and metabolic dysregulation. Our studies will test the thematic hypothesis that metabolic changes in the systemic milieu reprogram platelet precursors and platelets themselves, resulting in altered thrombotic activities of these critical cells. To examin this central theme, we propose four research projects and four cores and studies by a cadre of established and emerging investigators with proven track records of productive interactions. The intellectual infrastructure is as follows: Project 1, The Molecular Regulation of Platelet Reprogramming by the Metabolic Milieu, characterizes reprogramming events in platelets and dissects the mechanisms by which microRNAs influence platelet phenotypes in metabolic syndromes;Project 2, Metabolic Regulation of Platelet Reprogramming, will determine how genetic manipulation of glucose transporters and modulators of mitochondrial function regulate reprogramming events and functional activities of platelets;Project 3, The Role of the Metabolic Milieu in Regulating Platelet Reprogramming in Humans, prospectively examines platelet reprogramming and platelet hyperreactivity imposed by the metabolic milieu of type 2 diabetes. Project 3 will also determine if therapeutic correction of metabolic imbalances reverses platelet reprogramming and hyperactivity;Project 4, Platelet Reprogramming in Human Obesity and Diabetes, will evaluate platelet reprogramming and function in subjects exposed to acute triglyceride emulsion infusion, obese subjects before and after bariatric surgery, and patients enrolled in the Framingham Heart Study. Screening of an early-phase translation mRNA nanochip in humans with metabolic syndromes is a key feature in Project 4. Together, our translational studies will explore new paradigms in thrombosis and metabolic syndromes, and will be a unique platform for research career development.

Public Health Relevance

Patients with type 2 diabetes, obesity, or the metabolic syndrome are at increased risk for blood clots (thrombosis) caused by cells called platelets. Our studies will determine how metabolic factors in the blood and tissues (the metabolic milieu), such as high glucose and lipids, make platelets more prone to induce thrombosis, providing new insights into the treatment and management of diabetes and obesity.

Agency
National Institute of Health (NIH)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HL112311-03
Application #
8656415
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Link, Rebecca P
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Utah
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Koupenova, Milka; Vitseva, Olga; MacKay, Christopher R et al. (2014) Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 124:791-802
Schubert, Sebastian; Weyrich, Andrew S; Rowley, Jesse W (2014) A tour through the transcriptional landscape of platelets. Blood 124:493-502
Clancy, Lauren; Freedman, Jane E (2014) New paradigms in thrombosis: novel mediators and biomarkers platelet RNA transfer. J Thromb Thrombolysis 37:12-6
Freedman, Jane E (2014) Inherited dysfunctional nitric oxide signaling and the pathobiology of atherothrombotic disease. Circ Res 114:1372-3
Major, Heather D; Campbell, Robert A; Silver, Robert M et al. (2014) Synthesis of sFlt-1 by platelet-monocyte aggregates contributes to the pathogenesis of preeclampsia. Am J Obstet Gynecol 210:547.e1-7
Madden, Jesse L; Drakos, Stavros G; Stehlik, Josef et al. (2014) Baseline red blood cell osmotic fragility does not predict the degree of post-LVAD hemolysis. ASAIO J 60:524-8
Shi, Dallas S; Smith, Matthew C P; Campbell, Robert A et al. (2014) Proteasome function is required for platelet production. J Clin Invest 124:3757-66
Chen, Karin; Coonrod, Emily M; Kumanovics, Attila et al. (2013) Germline mutations in NFKB2 implicate the noncanonical NF-*B pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet 93:812-24
Franks, Zechariah; Campbell, Robert A; Vieira de Abreu, Adriana et al. (2013) Methicillin-resistant Staphylococcus aureus-induced thrombo-inflammatory response is reduced with timely antibiotic administration. Thromb Haemost 109:684-95
Freedman, Jane E; Tanriverdi, Kahraman (2013) Defining miRNA targets: balancing simplicity with complexity. Circulation 127:2075-7