The Administrative Core (Core A) will integrate all scientific and administrative functions of the University of Utah Molecular MedicineTranslational Research Center in Thrombosis (U2M2-TRCT). The Administrative Core will be the primary means by which the Director and Co-Director will catalyze integrative research within the U2M2-TRCT program. Core A will serve as the major administrative resource to all investigators, providing services and support for research projects 1-4, the other three cores, and the Administrative Coordinating Center. Core A will coordinate and oversee all scientific activities of the U2M2-TRCT. These activities include the investigators committee meeting, investigators research-in-progress series, the program newsletter, the Internal Advisory Board, the External Advisory Board, and all seminar series that are related to the U2M2-TRCT. Embedded within these activities is the training and development of young investigators. The Administrative Core will also provide budgetary management, document processing, and graphics support to U2M2-TRCT investigators. Throughout, the Administrative Core will be sensitive to the investigators needs on a daily basis to ensure the maintenance of a unified, collegial atmosphere.

Public Health Relevance

Patients with type 2 diabetes, obesity, or the metabolic syndrome are at increased risk for blood clots (thrombosis) caused by cells called platelets. Our studies will determine how metabolic factors in the blood and tissues (the metabolic milieu), such as high glucose and lipids, make platelets more prone to induce thrombosis, providing new insights into the treatment and management of diabetes and obesity.

Agency
National Institute of Health (NIH)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HL112311-03
Application #
8656420
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Utah
Department
Type
DUNS #
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Rondina, Matthew T; Tatsumi, Kohei; Bastarache, Julie A et al. (2016) Microvesicle Tissue Factor Activity and Interleukin-8 Levels are Associated with Mortality in Patients with Influenza A/H1N1 Infection. Crit Care Med 44:e574-8
Freedman, Jane E; Gerstein, Mark; Mick, Eric et al. (2016) Diverse human extracellular RNAs are widely detected in human plasma. Nat Commun 7:11106
Yoo, Jae Hyuk; Shi, Dallas S; Grossmann, Allie H et al. (2016) ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma. Cancer Cell 29:889-904
Yost, Christian C; Schwertz, Hansjörg; Cody, Mark J et al. (2016) Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation. J Clin Invest 126:3783-3798
Koliopoulou, Antigone; McKellar, Stephen H; Rondina, Matthew et al. (2016) Bleeding and thrombosis in chronic ventricular assist device therapy: focus on platelets. Curr Opin Cardiol 31:299-307
Stubblefield, William B; Alves, Nathan J; Rondina, Matthew T et al. (2016) Variable Resistance to Plasminogen Activator Initiated Fibrinolysis for Intermediate-Risk Pulmonary Embolism. PLoS One 11:e0148747
Shih, Lauren; Kaplan, David; Kraiss, Larry W et al. (2016) Platelet-Monocyte Aggregates and C-Reactive Protein are Associated with VTE in Older Surgical Patients. Sci Rep 6:27478
Araújo, Cláudia V; Campbell, Clarissa; Gonçalves-de-Albuquerque, Cassiano F et al. (2016) A PPARγ AGONIST ENHANCES BACTERIAL CLEARANCE THROUGH NEUTROPHIL EXTRACELLULAR TRAP FORMATION AND IMPROVES SURVIVAL IN SEPSIS. Shock 45:393-403
Rowley, Jesse W; Chappaz, Stéphane; Corduan, Aurélie et al. (2016) Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood 127:1743-51
Beaulieu, Lea M; Vitseva, Olga; Tanriverdi, Kahraman et al. (2016) Platelet functional and transcriptional changes induced by intralipid infusion. Thromb Haemost 115:1147-56

Showing the most recent 10 out of 74 publications