The Administrative Core (Core A) will integrate all scientific and administrative functions of the University of Utah Molecular MedicineTranslational Research Center in Thrombosis (U2M2-TRCT). The Administrative Core will be the primary means by which the Director and Co-Director will catalyze integrative research within the U2M2-TRCT program. Core A will serve as the major administrative resource to all investigators, providing services and support for research projects 1-4, the other three cores, and the Administrative Coordinating Center. Core A will coordinate and oversee all scientific activities of the U2M2-TRCT. These activities include the investigators committee meeting, investigators research-in-progress series, the program newsletter, the Internal Advisory Board, the External Advisory Board, and all seminar series that are related to the U2M2-TRCT. Embedded within these activities is the training and development of young investigators. The Administrative Core will also provide budgetary management, document processing, and graphics support to U2M2-TRCT investigators. Throughout, the Administrative Core will be sensitive to the investigators needs on a daily basis to ensure the maintenance of a unified, collegial atmosphere.

Public Health Relevance

Patients with type 2 diabetes, obesity, or the metabolic syndrome are at increased risk for blood clots (thrombosis) caused by cells called platelets. Our studies will determine how metabolic factors in the blood and tissues (the metabolic milieu), such as high glucose and lipids, make platelets more prone to induce thrombosis, providing new insights into the treatment and management of diabetes and obesity.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HL112311-03
Application #
8656420
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Utah
Department
Type
DUNS #
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Cloutier, Nathalie; Allaeys, Isabelle; Marcoux, Genevieve et al. (2018) Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc Natl Acad Sci U S A 115:E1550-E1559
Manne, B K; Münzer, P; Badolia, R et al. (2018) PDK1 governs thromboxane generation and thrombosis in platelets by regulating activation of Raf1 in the MAPK pathway. J Thromb Haemost 16:1211-1225
Schwertz, Hansjörg; Rowley, Jesse W; Schumann, Gerald G et al. (2018) Endogenous LINE-1 (Long Interspersed Nuclear Element-1) Reverse Transcriptase Activity in Platelets Controls Translational Events Through RNA-DNA Hybrids. Arterioscler Thromb Vasc Biol 38:801-815
Morales-Ortíz, Jessica; Deal, Victoria; Reyes, Fiorella et al. (2018) Platelet-derived TLT-1 is a prognostic indicator in ALI/ARDS and prevents tissue damage in the lungs in a mouse model. Blood 132:2495-2505
Middleton, Elizabeth A; Rondina, Matthew T; Schwertz, Hansjorg et al. (2018) Amicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 59:18-35
Morales-Ortíz, Jessica; Rondina, Matthew T; Brown, Samuel M et al. (2018) High Levels of Soluble Triggering Receptor Expressed on Myeloid Cells-Like Transcript (TLT)-1 Are Associated With Acute Respiratory Distress Syndrome. Clin Appl Thromb Hemost 24:1122-1127
Manne, B K; Rondina, M T (2018) PDK1 governs thromboxane generation and thrombosis in platelets by regulating activation of Raf1 in the MAPK pathway: reply. J Thromb Haemost 16:1904-1905
Fidler, Trevor P; Campbell, Robert A; Funari, Trevor et al. (2017) Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function. Cell Rep 20:881-894
Kapur, Rick; Kim, Michael; Rebetz, Johan et al. (2017) Low levels of interleukin-10 in patients with transfusion-related acute lung injury. Ann Transl Med 5:339
Zhu, Weiquan; Shi, Dallas S; Winter, Jacob M et al. (2017) Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy. J Clin Invest 127:4569-4582

Showing the most recent 10 out of 100 publications