We are proposing the establishment of a specialized chemistry center, the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, to expedite the discovery and development of high quality probe compounds which will significantly impact the goals of the MLPCN Research Network. Building on the infrastructure, resources and broad drug discovery (hit-to-lead-to-proof of concept-to-clinic) experience within the Lindsley Technology Enabled Synthesis (TES) Lab and the Conn Lab, we are poised to support probe development projects in collaboration with external Specialty Screening and Comprehensive Centers in the MLPCN Network. Due to our state-of-the-art technology platform for high-throughput medicinal chemistry and our M.S. and Ph.D. level staff chemists, our proposed center will be capable of supporting five (5) probe development projects, with internal or external centers, in parallel (~20 probe development programs/year) and require less than three months to develop probes and advanced molecular tools for in vitro and/or in vivo proof of concept experiments. The proposed Vanderbilt Specialized Chemistry Center for Accelerated Probe Development is unique from other centers in that the PI has eight years hit-to-lead-to-proof of concept experience in the pharmaceutical industry and has built a fully equipped high-throughput synthesis and purification lab, at the industry standard, within Vanderbilt which allows minimal human resources to develop probe compounds with expedited timelines. Our initial goal will be to deliver probe compounds that meet or exceed MPLCN guidelines and/or meet specific requirements for a probe of the investigator that initiated the screen. When aligned with NIH/NIMH and MLPCN goals, we will use a portion of our MLPCN and internal resources in the Lindsley and Conn Labs (synthesis/medicinal chemistry, pharmacology, DMPK and adiochemistry) in Center-Driven Research Projects to further refine and develop probes for therapeutically relevant targets to ensure in vivo proof of concept experiments can be performed to provide 'quick kills'or validate targets as potential therapeutic agents for unmet medical needs. Finally, we will offer training sabbaticals to other chemists within the MLPCN to learn parallel synthesis techniques and library design strategies.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IFCN-K (52))
Program Officer
Brady, Linda S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Oliver, Kendra H; Duvernay, Matthew T; Hamm, Heidi E et al. (2016) Loss of Serotonin Transporter Function Alters ADP-mediated Glycoprotein αIIbβ3 Activation through Dysregulation of the 5-HT2A Receptor. J Biol Chem 291:20210-9
Wood, Michael R; Noetzel, Meredith J; Tarr, James C et al. (2016) Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: Challenges in disposition. Bioorg Med Chem Lett 26:4282-6
Niswender, Colleen M; Jones, Carrie K; Lin, Xin et al. (2016) Development and Antiparkinsonian Activity of VU0418506, a Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor 4 Homomers without Activity at mGlu2/4 Heteromers. ACS Chem Neurosci 7:1201-11
Garcia-Barrantes, Pedro M; Cho, Hyekyung P; Blobaum, Anna L et al. (2016) Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 3. Engineering plasma stability by discovery and optimization of isoindolinone analogs. Bioorg Med Chem Lett 26:1869-72
Garcia-Barrantes, Pedro M; Cho, Hyekyung P; Metts, Adam M et al. (2016) Lead optimization of the VU0486321 series of mGlu(1) PAMs. Part 2: SAR of alternative 3-methyl heterocycles and progress towards an in vivo tool. Bioorg Med Chem Lett 26:751-6
Wood, Michael R; Noetzel, Meredith J; Poslusney, Michael S et al. (2016) Challenges in the development of an M4 PAM in vivo tool compound: The discovery of VU0467154 and unexpected DMPK profiles of close analogs. Bioorg Med Chem Lett :
Garcia-Barrantes, Pedro M; Cho, Hyekyung P; Starr, Tahj M et al. (2016) Re-exploration of the mGlu₁ PAM Ro 07-11401 scaffold: Discovery of analogs with improved CNS penetration despite steep SAR. Bioorg Med Chem Lett 26:2289-92
Wood, Michael R; Noetzel, Meredith J; Engers, Julie L et al. (2016) Discovery and optimization of a novel series of highly CNS penetrant M4 PAMs based on a 5,6-dimethyl-4-(piperidin-1-yl)thieno[2,3-d]pyrimidine core. Bioorg Med Chem Lett 26:3029-33
Wu, Yang; Stauffer, Shaun R; Stanfield, Robyn L et al. (2016) Discovery of Small-Molecule Nonfluorescent Inhibitors of Fluorogen-Fluorogen Activating Protein Binding Pair. J Biomol Screen 21:74-87
An, Hanbing; Stoops, Sydney L; Deane, Natasha G et al. (2015) Small molecule/ML327 mediated transcriptional de-repression of E-cadherin and inhibition of epithelial-to-mesenchymal transition. Oncotarget 6:22934-48

Showing the most recent 10 out of 137 publications