CHEMISTRY CORE The Chemistry Core is the central component of this proposal and will be responsible for engaging in accelerated probe development programs with Specialty Screening and Comprehensive Centers, employing TES and medicinal chemistry design principles in probe development, integrating cheminformatics and computational chemistry into HTS triage and probe design, executing large scale synthesis of probe molecules, developing advanced molecular tools and providing training for TES, parallel synthesis and medicinal chemistry across the MLPCN. The Chemistry Core will work closely with Informatics and Administrative Core to ensure MLPCN goals are met. The following specific aims summarize the major functions of the chemistry core:
AIM 1. To rapidly develop high quality probe molecules employing TES and medicinal chemistry design principles with input from, and analysis with, computational chemistry tools, and to submit all compounds synthesized to the MLSMR on a quarterly basis.
AIM 2. To employ our internal ADME/DMPK component along with in silico methods to further optimize high quality MLPCN probe molecules .
AIM 3. To perform large scale synthesis (>5 g) of probe molecules developed both at Vanderbilt and across the MLPCN and optimize compound formulation.
AIM 4. To collaborate with the Informatics Core for the overlapping responsibility of compound registration and compound management.
AIM 5. To train chemists across the MLPCN in the art of TES and parallel synthesis to accelerate probe development at other Chemistry and Comprehensive Centers.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54MH084659-06
Application #
8517187
Study Section
Special Emphasis Panel (ZRG1-IFCN-K)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
6
Fiscal Year
2013
Total Cost
$1,658,110
Indirect Cost
$702,490
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Oliver, Kendra H; Duvernay, Matthew T; Hamm, Heidi E et al. (2016) Loss of Serotonin Transporter Function Alters ADP-mediated Glycoprotein αIIbβ3 Activation through Dysregulation of the 5-HT2A Receptor. J Biol Chem 291:20210-9
Wood, Michael R; Noetzel, Meredith J; Tarr, James C et al. (2016) Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: Challenges in disposition. Bioorg Med Chem Lett 26:4282-6
Niswender, Colleen M; Jones, Carrie K; Lin, Xin et al. (2016) Development and Antiparkinsonian Activity of VU0418506, a Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor 4 Homomers without Activity at mGlu2/4 Heteromers. ACS Chem Neurosci 7:1201-11
Garcia-Barrantes, Pedro M; Cho, Hyekyung P; Blobaum, Anna L et al. (2016) Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 3. Engineering plasma stability by discovery and optimization of isoindolinone analogs. Bioorg Med Chem Lett 26:1869-72
Garcia-Barrantes, Pedro M; Cho, Hyekyung P; Metts, Adam M et al. (2016) Lead optimization of the VU0486321 series of mGlu(1) PAMs. Part 2: SAR of alternative 3-methyl heterocycles and progress towards an in vivo tool. Bioorg Med Chem Lett 26:751-6
Wood, Michael R; Noetzel, Meredith J; Poslusney, Michael S et al. (2016) Challenges in the development of an M4 PAM in vivo tool compound: The discovery of VU0467154 and unexpected DMPK profiles of close analogs. Bioorg Med Chem Lett :
Garcia-Barrantes, Pedro M; Cho, Hyekyung P; Starr, Tahj M et al. (2016) Re-exploration of the mGlu₁ PAM Ro 07-11401 scaffold: Discovery of analogs with improved CNS penetration despite steep SAR. Bioorg Med Chem Lett 26:2289-92
Wood, Michael R; Noetzel, Meredith J; Engers, Julie L et al. (2016) Discovery and optimization of a novel series of highly CNS penetrant M4 PAMs based on a 5,6-dimethyl-4-(piperidin-1-yl)thieno[2,3-d]pyrimidine core. Bioorg Med Chem Lett 26:3029-33
Wu, Yang; Stauffer, Shaun R; Stanfield, Robyn L et al. (2016) Discovery of Small-Molecule Nonfluorescent Inhibitors of Fluorogen-Fluorogen Activating Protein Binding Pair. J Biomol Screen 21:74-87
An, Hanbing; Stoops, Sydney L; Deane, Natasha G et al. (2015) Small molecule/ML327 mediated transcriptional de-repression of E-cadherin and inhibition of epithelial-to-mesenchymal transition. Oncotarget 6:22934-48

Showing the most recent 10 out of 137 publications