? Myotonic dystrophy type 1 (DM1) is one of the most variable diseases known to medicine. Research on this disorder has led to the recognition of RNA toxicity, a new paradigm for muscle disease. The mutation in DMl, an expanded CTG repeat in the 3'untranslated region of DMPK, is genetically unstable. Increases of CTG expansion size in subsequent generations are associated with greater severity of disease. Deleterious effects of the expansion are mediated by mutant RNA, which contains an expanded CUG repeat. Splicing factors that bind to CUG expansions are sequestered, which leads to abnormal regulation of alternative splicing. Recognition of this mechanism has fostered the development of targeted therapies for DM1. As new treatments advance into clinical trials, there is a compelling need for clinical endpoints that are reliable and sensitive indicators of the therapeutic response. The process of testing new agents will be greatly assisted by the availability of biomarkers that accurately reflect drug activity in muscle tissue. Furthermore, it is increasingly important to understand the biological basis for DM1 variability, because this may confound clinical outcomes or impact the individual response to targeted therapies. We have found that some individuals with very large CTG expansions in muscle tissue do not exhibit severe muscle weakness, suggesting that genetic factors other than expansion size may influence DM1 severity.
Aim 1 of this project will quantify longitudinal changes of DM1 across a wide spectrum of patients, and identify endpoints that are sensitive for detecting disease progression.
Aim 2 will determine whether it is feasible to monitor splicing defects in muscle tissue in multicenter studies. We also plan to qualify a group of splicing events as biomarkers of DM1 severity.
Aim 3 will standardize myotonia assessment as a physiological indicator of RNA toxicity.
Aim 4 will test the hypothesis that CTG expansion length is not a unitary explanation for DM1 severity. Genetic modifiers of DM1 will be sought, first by examining a candidate locus and then by testing for associations across the entire genome. Overall, this project will supply critical information that is needed to move forward with therapeutic development in DM1.

Public Health Relevance

;This project will supply critical information that is needed to move forward with development of new treatments for myotonic dystrophy type 1. This project seeks to identify the best ways to evaluate and interact with patients to demonstrate the effectiveness of promising new therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS048843-12
Application #
8733760
Study Section
Special Emphasis Panel (ZNS1-SRB-S)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
12
Fiscal Year
2014
Total Cost
$585,136
Indirect Cost
$197,598
Name
University of Rochester
Department
Type
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Johnson, Nicholas E; Ekstrom, Anne-Berit; Campbell, Craig et al. (2016) Parent-reported multi-national study of the impact of congenital and childhood onset myotonic dystrophy. Dev Med Child Neurol 58:698-705
Slean, Meghan M; Panigrahi, Gagan B; Castel, Arturo López et al. (2016) Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks. DNA Repair (Amst) 42:107-18
Fitzgerald, Bryan P; Conn, Kelly M; Smith, Joanne et al. (2016) Medication adherence in patients with myotonic dystrophy and facioscapulohumeral muscular dystrophy. J Neurol 263:2528-2537
Heatwole, Chad; Bode, Rita; Johnson, Nicholas E et al. (2016) Myotonic dystrophy health index: Correlations with clinical tests and patient function. Muscle Nerve 53:183-90
Gloss, David; Moxley 3rd, Richard T; Ashwal, Stephen et al. (2016) Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 86:465-72
Heatwole, Chad; Johnson, Nicholas; Bode, Rita et al. (2015) Patient-Reported Impact of Symptoms in Myotonic Dystrophy Type 2 (PRISM-2). Neurology 85:2136-46
Yadava, Ramesh S; Foff, Erin P; Yu, Qing et al. (2015) TWEAK/Fn14, a pathway and novel therapeutic target in myotonic dystrophy. Hum Mol Genet 24:2035-48
Pandey, Sanjay K; Wheeler, Thurman M; Justice, Samantha L et al. (2015) Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 355:329-40
Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa et al. (2015) Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy. Nucleic Acids Res 43:3318-31
Smith, Amanda E; McMullen, Kara; Jensen, Mark P et al. (2014) Symptom burden in persons with myotonic and facioscapulohumeral muscular dystrophy. Am J Phys Med Rehabil 93:387-95

Showing the most recent 10 out of 74 publications