The purpose of this project is to gather the information and create the infrastructure needed to plan and carry out clinical trials for patients with deficient glycosylation of alpha-dystroglycan. These patients have muscular dystrophy, with or without multisystem involvement (the dystroglycanopathies). Thus far, mutations in six genes (POMT1, P0MT2, POMGnT1, FKTN, FKRP, and LARGE) are known to result in dystroglycanopathies. There are several clinical subtypes, and these have overlapping phenotypes. The dystroglycanopathy population poses special challenges in thinking about treatment trials due to the wide range in clinical severity. In addition, the cognitive impairment seen in some of the subtypes limits patients'ability to cooperate with testing.
In Aim 1, we will recruit patients with suspected or proven dystroglycanopathies and define their clinical phenotypes using historical information, standardized functional tests, and muscle ultrasound. In cooperation with Core B, we will evaluate muscle biopsies, define patients'alpha-dystroglycan glycosylation status in cultured fibroblasts, and determine their genotype.
In Aim 2, we will follow patients with dystroglycanopathy longitudinally using a battery of potential clinical trial outcome measures. This will provide us with natural history information and determine optimal outcome measures for use in therapeutic trials.
In Aim 3, we will develop the infrastructure for a proposed clinical trial of corticosteroids, using the data collected in Aims 1 and 2 to guide trial design. Anecdotes and case reports suggest corticosteroids are beneficial in patients with the dystroglycanopathies. In this proposal, we will develop the patient cohort, outcome markers and infrastructure to test this hypothesis. We expect that the results of these three aims will prepare us to evaluate novel treatments for these rare forms of muscular dystrophy as they become available.

Public Health Relevance

The dystroglycanopathies are a group of muscular dystrophies with a wide range of severity. This clinical spectrum presents special challenges in planning treatment trials for this population. In this proposal, we will collect data and create an infrastructure that will facilitate translation of possible treatments to clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS053672-09
Application #
8477315
Study Section
Special Emphasis Panel (ZNS1-SRB-S)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
9
Fiscal Year
2013
Total Cost
$337,813
Indirect Cost
$97,364
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Lee, Angela J; Buckingham, Edward T; Kauer, Aaron J et al. (2018) Descriptive Phenotype of Obsessive Compulsive Symptoms in Males With Duchenne Muscular Dystrophy. J Child Neurol 33:572-579
González Coraspe, José Andrés; Weis, Joachim; Anderson, Mary E et al. (2018) Biochemical and pathological changes result from mutated Caveolin-3 in muscle. Skelet Muscle 8:28
Martinez-Thompson, Jennifer M; Niu, Zhiyv; Tracy, Jennifer A et al. (2018) Autosomal dominant calpainopathy due to heterozygous CAPN3 C.643_663del21. Muscle Nerve 57:679-683
Brun, Brianna N; Willer, Tobias; Darbro, Benjamin W et al. (2018) Uniparental disomy unveils a novel recessive mutation in POMT2. Neuromuscul Disord 28:592-596
Larson, Austin A; Baker 2nd, Peter R; Milev, Miroslav P et al. (2018) TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of ?-dystroglycan and muscular dystrophy. Skelet Muscle 8:17
Carlson, Courtney R; Moore, Steven A; Mathews, Katherine D (2018) Dystrophinopathy muscle biopsies in the genetic testing ERA: One center's data. Muscle Nerve :
Shaw, Natalie D; Brand, Harrison; Kupchinsky, Zachary A et al. (2017) SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nat Genet 49:238-248
Brun, Brianna N; Mockler, Shelley R H; Laubscher, Katie M et al. (2017) Childhood Activity on Progression in Limb Girdle Muscular Dystrophy 2I. J Child Neurol 32:204-209
Clements, Reena; Turk, Rolf; Campbell, Kevin P et al. (2017) Dystroglycan Maintains Inner Limiting Membrane Integrity to Coordinate Retinal Development. J Neurosci 37:8559-8574
Cox, Melissa L; Evans, Jacquelyn M; Davis, Alexander G et al. (2017) Exome sequencing reveals independent SGCD deletions causing limb girdle muscular dystrophy in Boston terriers. Skelet Muscle 7:15

Showing the most recent 10 out of 97 publications