Although different nations have variable preferences for specific antidotes against cyanide poisoning, the antidotes of choice in the U.S. for over 30 years have been the combination of sodium nitrite and sodium thiosulfate, both administered intravenously in timely sequence. In recent years, this has been supplemented with the volatile amyl nitrite given nasally for its vasodilatory effect. However, these agents are generally not only slow acting, but have potential for toxicity and serious complications if not used properly. A recent perspective article on cyanide, authored by experts at the USAMRICD, pointed out that in severe cyanide poisonings, rapid intervention is the key, and treatments require a """"""""three minute solution"""""""", akin to the nerve agent antidote kit.3 The availability of non-toxic agents that could be taken prophylactically by military personnel on threatened exposure or by first responders to a cyanide emergency, also represents an ideal requirement. These goals have not yet been achieved to date, and the present treatment modalities are unsuitable in a military setting, or in the event of actual use of cyanide as a threat agent on a large scale against the civilian population. We have recently developed (unpublished) a series of prototype cyanide antidotes that release the substrate for the enzyme, 3-mercaptopyruvate sulfurtransferase (3-MPST) in vivo, thereby providing a viable alternative method for detoxifying cyanide by utilizing this ubiquitous cellular enzyme to convert cyanide to the non-toxic thiocyanate. The rationale here is to provide this enzyme with its natural substrate directly, thereby by-passing the necessity for generating it endogenously from the transamination of L-cysteine, a sulfhydryl amino acid known to be less abundant in tissues. We have also developed a unique mouse model-that minimizes the use of large numbers of animals~for assessing the toxicity of sub-lethal doses of cyanide, which is highly amenable for evaluating the antidotal efficacy of our compounds. Having already established """"""""proof of concept"""""""" that our prototype compounds protect against cyanide toxicity in mice, we will simultaneously a) expand the prototype series, and design and synthesize analogs around these series to improve antidotal efficacy, bioavailability, and physical properties of these compounds, b) superimpose the endogenous antioxidant glutathione (as its bioavailable form) in the above regimen to evaluate whether such antioxidant co-treatment would improve survivability and protect against the neurological deficits seen in long term survivors of acute cyanide intoxication, and c) accelerate preclinical studies (acute and long term toxicity, ADME, other animal models, etc.) for those compounds already demonstrated to be protective, with the goal of filing an IND application to the FDA. Although most of the compounds of our series are rapid acting, at least one prototype (perhaps more) is slower acting (by design), but fully protective when administered orally;hence, it may be advanced as a candidate for prophylactic use.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS063718-03
Application #
8130859
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
2012-05-31
Budget Start
2010-06-01
Budget End
2012-05-31
Support Year
3
Fiscal Year
2010
Total Cost
$230,782
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Tsai, Chen S; Mao, Rong W; Tsai, Shirley C et al. (2017) Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications. Micromachines (Basel) 8:
Brenner, Matthew; Azer, Sarah M; Oh, Kyung-Jin et al. (2017) Oral Glycine and Sodium Thiosulfate for Lethal Cyanide Ingestion. J Clin Toxicol 7:
Brenner, M; Benavides, S; Mahon, S B et al. (2014) The vitamin B12 analog cobinamide is an effective hydrogen sulfide antidote in a lethal rabbit model. Clin Toxicol (Phila) 52:490-7
Tsai, C S; Mao, R W; Lin, S K et al. (2014) Faraday instability-based micro droplet ejection for inhalation drug delivery. Technology (Singap World Sci) 2:75
Lee, Jangwoen; Kim, Jae G; Mahon, Sari B et al. (2014) Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy. J Biomed Opt 19:055001
Nath, Anjali K; Roberts, Lee D; Liu, Yan et al. (2013) Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. FASEB J 27:1928-38
Kim, Jae G; Lee, Jangwoen; Mahon, Sari B et al. (2012) Noninvasive monitoring of treatment response in a rabbit cyanide toxicity model reveals differences in brain and muscle metabolism. J Biomed Opt 17:105005
Lee, Sang-Won; Heidary, Andrew E; Yoon, David et al. (2011) Quantification of airway thickness changes in smoke-inhalation injury using in-vivo 3-D endoscopic frequency-domain optical coherence tomography. Biomed Opt Express 2:243-54
Chan, Adriano; Crankshaw, Daune L; Monteil, Alexandre et al. (2011) The combination of cobinamide and sulfanegen is highly effective in mouse models of cyanide poisoning. Clin Toxicol (Phila) 49:366-73
Brenner, Matthew; Kim, Jae G; Lee, Jangwoen et al. (2010) Sulfanegen sodium treatment in a rabbit model of sub-lethal cyanide toxicity. Toxicol Appl Pharmacol 248:269-76

Showing the most recent 10 out of 14 publications