Although individually rare """"""""orphan"""""""" conditions, the lysosomal diseases collectively affect 1 in 6,000 individuals and are responsible for a significant disability and disease burden. These diseases have become a test bed for some of the most innovative and advanced experimental treatments. The rarity of each lysosomal disease means that no single medical research center has an opportunity to see the entire spectrum, or to acquire sufficient numbers to adequately test new therapies. Thus, collaborative clinical research on these rare disorders and their treatment is absolutely crucial to make substantial progress. The Lysosomal Disease Network brings together more than 500 researchers and clinicians across the country, Patient Advocacy Groups (PAG), and other interested partners, and has generated a synergistic research and educational consortium to advance treatment of these diseases. In this proposal, longitudinal studies of the natural history of 11 lysosomal disease categories and 7 pilot studies of measurement of outcome and phase l/ll clinical trials are focused on several themes. Central nervous system (CNS) disease has been the most difficult to treat as well as to measure. A significant focus will be on quantitative methods of CNS structure and function providing a standard toolbox across the network in the Mucopolysaccharidoses (MPS), Batten disease, Niemann-Pick type C, Mucolipidosis type IV, Late Infantile Neuronal Ceroid Lipofuscinosis, Glycoproteinoses, GM2-gangliosidoses, and Wolman disease. A study on Pompe disease focuses primarily on the immune modulatory factors affecting treatment response. Additionally, we include a study on bone disease in the MPS and a set of innovative studies on Fabry disease in which collaborators will carry out the natural history of kidney structure and function, pulmonary function as a marker of disease progression in children, and identification of Fabry disease among high-risk populations. We will provide support for all of these projects, leveraging additional resources from PAG and industry, in the hope of fostering research on other lysosomal diseases and providing the impetus for more in-depth studies of pathophysiology and treatment. In addition, this network will provide substantial support for at least two postdoctoral trainees each year for career development in lysosomal diseases as well as a national meeting (WORLD Symposium) for sharing of research findings, education, and network synergy. A web-site already provides an educational, research, and clinical resource for the Network, patients, physicians, and the public.

Public Health Relevance

The combined and integrated efforts of the Lysosomal Disease Network will focus limited resources toward creating a network of centers with expertise in one or more of these diseases in order to solve major challenges in diagnosis, disease management, and therapy. Solutions to these problems will have direct impact on patients suffering from lysosomal diseases, and important implications for medical practice.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-HOP-Y (50))
Program Officer
Morris, Jill A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Schools of Medicine
United States
Zip Code
Schneider, Joseph; Burmeister, Lynn A; Rudser, Kyle et al. (2016) Hypothyroidism in late-onset Pompe disease. Mol Genet Metab Rep 8:24-7
Polgreen, Lynda E; Vehe, Richard K; Rudser, Kyle et al. (2016) Elevated TNF-α is associated with pain and physical disability in mucopolysaccharidosis types I, II, and VI. Mol Genet Metab 117:427-30
Shapiro, Elsa G; Rudser, Kyle; Ahmed, Alia et al. (2016) A longitudinal study of emotional adjustment, quality of life and adaptive function in attenuated MPS II. Mol Genet Metab Rep 7:32-9
Dyke, J P; Sondhi, D; Voss, H U et al. (2016) Brain Region-Specific Degeneration with Disease Progression in Late Infantile Neuronal Ceroid Lipofuscinosis (CLN2 Disease). AJNR Am J Neuroradiol 37:1160-9
Najafian, Behzad; Tøndel, Camilla; Svarstad, Einar et al. (2016) One Year of Enzyme Replacement Therapy Reduces Globotriaosylceramide Inclusions in Podocytes in Male Adult Patients with Fabry Disease. PLoS One 11:e0152812
Shapiro, E; King, K; Ahmed, A et al. (2016) The Neurobehavioral Phenotype in Mucopolysaccharidosis Type IIIB: an Exploratory Study. Mol Genet Metab Rep 6:41-47
Rappaport, Jeff; Manthe, Rachel L; Solomon, Melani et al. (2016) A Comparative Study on the Alterations of Endocytic Pathways in Multiple Lysosomal Storage Disorders. Mol Pharm 13:357-68
Ahmed, Alia; Shapiro, Elsa; Rudser, Kyle et al. (2016) Association of somatic burden of disease with age and neuropsychological measures in attenuated mucopolysaccharidosis types I, II and VI. Mol Genet Metab Rep 7:27-31
Karimian, Zahra; Whitley, Chester B; Rudser, Kyle D et al. (2016) Delayed Infusion Reactions to Enzyme Replacement Therapies. JIMD Rep :
Kazi, Zoheb B; Prater, Sean N; Kobori, Joyce A et al. (2016) Durable and sustained immune tolerance to ERT in Pompe disease with entrenched immune responses. JCI Insight 1:

Showing the most recent 10 out of 84 publications