A number of characteristics distinguish TETS and organophosphorus (OPs) cholinesterase inhibitors as credible chemical threat agents. 1) These agents can be easily manufactured on a large scale. 2) They are widely available in some countries even though banned in the US. 3) Exposure to either TETS or OPs dose dependently results in lethality or profound and sustained damage to the brain. In rodents, acute TETS or OP intoxication elicits delayed neuronal injury as evidenced by increased apoptosis and oxidative stress in the CNS that persists for up to several days following exposure. In humans, indivuduals that survive acute TETS or OP intoxication often experience significant brain damage. A limited number of therapeutic agents are available to prevent mortality induced by OP threat agents but these do not sufficiently protect against brain injury. Therapeutic approaches for TETS intoxication are less well known. To address these gaps, Core B will synthesize TETS and an inactive analog to be used as a negative control in mechanistic studies, as well as characterize and validate primary standard stocks of TETS, DFP and parathion. This will enable Projects 1-3 to advance applied therapeutic and mechanistic knowledge on these agents. Furthermore we will synthesize, characterize, test and optimize the pharmacokinetic (PK) properties and CNS penetration of two distinct classes of therapeutic agents, sEH inhibitors and KCa2 channel activators. Overall, the successful realization of the proposed aims in Core B is likely to improve therapeutic approaches for the treatment of acute OP and TETS intoxication by providing novel therapeutics for physicians and emergency first-responders to effectively intervene in cases of human intoxication with these seizurogenic chemical threat agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
3U54NS079202-02S1
Application #
8851853
Study Section
Special Emphasis Panel (ZRG1-MDCN-J)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
2
Fiscal Year
2014
Total Cost
$9,641
Indirect Cost
$3,416
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Flannery, Brenna M; Silverman, Jill L; Bruun, Donald A et al. (2015) Behavioral assessment of NIH Swiss mice acutely intoxicated with tetramethylenedisulfotetramine. Neurotoxicol Teratol 47:36-45
Coleman, Nichole; Nguyen, Hai M; Cao, Zhengyu et al. (2015) The riluzole derivative 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a mixed KCa2 activator and NaV blocker, is a potent novel anticonvulsant. Neurotherapeutics 12:234-49
Zhao, Chunqing; Hwang, Sung Hee; Buchholz, Bruce A et al. (2014) GABAA receptor target of tetramethylenedisulfotetramine. Proc Natl Acad Sci U S A 111:8607-12
Lee, Kin Sing Stephen; Liu, Jun-Yan; Wagner, Karen M et al. (2014) Optimized inhibitors of soluble epoxide hydrolase improve in vitro target residence time and in vivo efficacy. J Med Chem 57:7016-30
Fritsch, Brita; Reis, Janine; Gasior, Maciej et al. (2014) Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis. J Neurosci 34:5765-75
Kujal, Petr; ?ertíková Chábová, Vera; Škaroupková, Petra et al. (2014) Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Pharmacol Physiol 41:227-37
Coleman, Nichole; Brown, Brandon M; Oliván-Viguera, Aida et al. (2014) New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1. Mol Pharmacol 86:342-57
Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M et al. (2014) Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity. Mol Pharmacol 85:630-9
Wagner, Karen; Vito, Steve; Inceoglu, Bora et al. (2014) The role of long chain fatty acids and their epoxide metabolites in nociceptive signaling. Prostaglandins Other Lipid Mediat 113-115:2-12
Vito, Stephen T; Austin, Adam T; Banks, Christopher N et al. (2014) Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication. Toxicol Appl Pharmacol 281:185-94

Showing the most recent 10 out of 24 publications