The overall mission of the Training and Education Core (TEC) will be to create the diverse human resources capable of conducting team-based interdisciplinary research focused on the complex problems posed by chemical threat agents. Advanced training in basic and translational toxicological sciences and drug discovery will be provided to the next generation of researchers, more specifically, technicians, medical and graduate students, postdoctoral fellows, and/or independent investigators within and outside the Center. Building upon the breadth of resources available at the UC Davis campus, the TEC will establish a special workshop and seminar series focused on chemical threat agent research. External instructors will be incorporated into the training and educational activities to provide cross-disciplinary depth. Trainees will have access to general and specialized coursework within the rich university curriculum and will be required to audit Drug Discovery and Development (PHA 207), a 3-unit graduate course offered by the UC Davis Pharmacology Department Interactions with other campus training programs, such as the NIEHS-funded Superfund Basic Research Program, the NIH Training Program in Biomolecular Technology at UC Davis, the UC System Life Sciences Informatics Program, and the UC Davis University Extension, will further enrich the educational activities available to trainees. The Center investigators bring to bear a critical mass of experience in multiple stages of drug discovery, development and toxicology, which are directly applicable to the overall goal of the proposed work. The TEC will facilitate hands-on interdisciplinary and collaborative research training in toxicology and drug discovery related to chemical threat agents in the laboratories of the project and core leaders. Resident members of the Center laboratories will receive training through a comlaination of individual mentorship, ongoing interdisciplinary research projects, conferences, and other training opportunities. Trainees will be motivated and challenged to work in flexible, task-oriented teams, which go beyond the boundaries of individual laboratories, to explore, understand and mitigate the health impacts of chemical threat agents. Trainees from CounterACT-associated laboratories across the country will be able to visit UC Davis laboratories for short periods of time and receive individualized, hands-on training in areas of their interest, and be able to participate in educational activities, including workshop and seminar series, and audit courses. By fulfilling these aims, the TEC will accomplish its goal of developing scientists with increased understanding of the concepts, challenges and opportunities in toxicology and drug discovery related to chemical threat agents. The core will serve the needs of both internal and visiting external trainees.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS079202-03
Application #
8730729
Study Section
Special Emphasis Panel (ZRG1-MDCN-J)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
$69,033
Indirect Cost
$24,206
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Lee, Kin Sing Stephen; Henriksen, Niel M; Ng, Connie J et al. (2017) Probing the orientation of inhibitor and epoxy-eicosatrienoic acid binding in the active site of soluble epoxide hydrolase. Arch Biochem Biophys 613:1-11
Wagner, Karen; Gilda, Jennifer; Yang, Jun et al. (2017) Soluble epoxide hydrolase inhibition alleviates neuropathy in Akita (Ins2 Akita) mice. Behav Brain Res 326:69-76
Hwang, Sung Hee; Wagner, Karen; Xu, Jian et al. (2017) Chemical synthesis and biological evaluation of ?-hydroxy polyunsaturated fatty acids. Bioorg Med Chem Lett 27:620-625
Nguyen, Hai M; Singh, Vikrant; Pressly, Brandon et al. (2017) Structural Insights into the Atomistic Mechanisms of Action of Small Molecule Inhibitors Targeting the KCa3.1 Channel Pore. Mol Pharmacol 91:392-402
Wagner, K; Lee, K S S; Yang, J et al. (2017) Epoxy fatty acids mediate analgesia in murine diabetic neuropathy. Eur J Pain 21:456-465
Cao, Zhengyu; Xu, Jian; Hulsizer, Susan et al. (2017) Influence of tetramethylenedisulfotetramine on synchronous calcium oscillations at distinct developmental stages of hippocampal neuronal cultures. Neurotoxicology 58:11-22
Chapman, Christopher A R; Wang, Ling; Chen, Hao et al. (2017) Nanoporous Gold Biointerfaces: Modifying Nanostructure to Control Neural Cell Coverage and Enhance Electrophysiological Recording Performance. Adv Funct Mater 27:
Hu, Pingping; Wu, Xiaojuan; Khandelwal, Alok R et al. (2017) Endothelial Nox4-based NADPH oxidase regulates atherosclerosis via soluble epoxide hydrolase. Biochim Biophys Acta 1863:1382-1391
Pressly, Brandon; Nguyen, Hai M; Wulff, Heike (2017) GABAA receptor subtype selectivity of the proconvulsant rodenticide TETS. Arch Toxicol :
Hobson, Brad A; Sisó, Sílvia; Rowland, Douglas J et al. (2017) From the Cover: MagneticResonance Imaging Reveals Progressive Brain Injury in Rats Acutely Intoxicated With Diisopropylfluorophosphate. Toxicol Sci 157:342-353

Showing the most recent 10 out of 83 publications