The overall objective of Core A is to provide analytical support to Projects 1, 2, and 3 and the Probe and Pharmaceutical Optimization Core (Core B). Core A is an integral part of the center by providing advanced analytical support, training, and cutting edge analytical techniques for drug and biomarker detection. More specifically, Core A will develop methods for the detection of target compounds and their metabolites by LC-MS or GC-MS and provide QC analysis of standard solutions prior to their use in projects. Detailed rodent ADME studies for the anticonvulsants and neuroprotectants will be performed to assist the center projects in dose selection. Core A will work with Project 2 in the identification of biomarkers of seizure as a biochemical test of how therapeutic efficacy. Metabolomics techniques, both targeted and global will be employed. Targeted metabolomics will focus on both oxylipins and neurosteroids since levels in both pathways are altered after a seizure. Global metabolomics, as a broader approach, can identify biomarkers of seizure and therapy if needed. Current methods of detection of tetramethylenedisulfotetramine (TETs) are insensitive. TETs seems like an ideal candidate for an immunoassay, since it has several heteroatoms to provide recognition points for the antibody. An additional benefit of immunoassay is its potential to be packaged in a field deployable platform for on-site detection. When there is a clear need, immunoassays to other toxins and their metabolites will be created. Objective-1: Provide general analytical support using GC-MS or LC-MS for the detection of toxins or drugs and their metabolites in biological matrices and formulations. Objective-2: Determine the metabolomic profiles of brain tissue from Projects 1 and 2 as biomarkers of seizure damage for use in assessing neuroprotective efficacy of candidate therapeutics. Objective-3: Develop innovative immunoassay methods for detection of TETs in biological and environmental matrices.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Flannery, Brenna M; Silverman, Jill L; Bruun, Donald A et al. (2015) Behavioral assessment of NIH Swiss mice acutely intoxicated with tetramethylenedisulfotetramine. Neurotoxicol Teratol 47:36-45
Coleman, Nichole; Nguyen, Hai M; Cao, Zhengyu et al. (2015) The riluzole derivative 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a mixed KCa2 activator and NaV blocker, is a potent novel anticonvulsant. Neurotherapeutics 12:234-49
Zhao, Chunqing; Hwang, Sung Hee; Buchholz, Bruce A et al. (2014) GABAA receptor target of tetramethylenedisulfotetramine. Proc Natl Acad Sci U S A 111:8607-12
Lee, Kin Sing Stephen; Liu, Jun-Yan; Wagner, Karen M et al. (2014) Optimized inhibitors of soluble epoxide hydrolase improve in vitro target residence time and in vivo efficacy. J Med Chem 57:7016-30
Fritsch, Brita; Reis, Janine; Gasior, Maciej et al. (2014) Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis. J Neurosci 34:5765-75
Kujal, Petr; ?ertíková Chábová, Vera; Škaroupková, Petra et al. (2014) Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Pharmacol Physiol 41:227-37
Coleman, Nichole; Brown, Brandon M; Oliván-Viguera, Aida et al. (2014) New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1. Mol Pharmacol 86:342-57
Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M et al. (2014) Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity. Mol Pharmacol 85:630-9
Wagner, Karen; Vito, Steve; Inceoglu, Bora et al. (2014) The role of long chain fatty acids and their epoxide metabolites in nociceptive signaling. Prostaglandins Other Lipid Mediat 113-115:2-12
Vito, Stephen T; Austin, Adam T; Banks, Christopher N et al. (2014) Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication. Toxicol Appl Pharmacol 281:185-94

Showing the most recent 10 out of 24 publications