Our goal is to create shared Electron Microscopy (EM) facility, which would enable the neuroscience community in the UCC to extent their experimental approaches. All the proposed exploratory projects employ the EM technique, although to a different extent. Thus, Dr. Bykhovskaia's project heavily relies on the EM approach in analyzing the organization of synaptic vesicles, and the EM facility will provide support for this project by helping the Bykhovskaia lab to improve the EM protocols. Dr. Jorquera's project contain an experimental series in quantifying functional pools of synaptic vesicles, where the EM approach is employed. Dr. Jorquera and his lab members will be trained by the EM facility personnel, will get access to the equipment, and will be consulted and guided by the EM facility Director in performing the EM experiments. Finally, Dr. Martins will explore the capabilities of the EM technique in analyzing the effect of a neuroprotective drug on neuronal ultrastructure and apoptosis. Dr. Martins will be guided by the Director of the EM facility in the experimental design, and the EM facility will provide Dr. Martins with service in the sample preparation and EM analysis. In addition, other members of the UCC neuroscience community, including Drs. Eaton, Skatchkov, and Ferchmin are in the process of planning and developing EM approaches. Thus, the neuroscience community at the UCC has a strong need for electron microscopic data. This includes 3D reconstructions of synaptic terminals, high resolution protein localization, and genetic approaches. Importantly, EM capabilities in the UCC attracted several outside collaborations, including Dr. C Tapia (Columbia University), Dr. N. Toni (Lausanne University), Dr. C.F. Stevens (The Salk Institute, and Dr. Luo (UC Irvine). Importantly, a reporter gene for electron microscopy of neurons has been recently developed in the lab of Dr. Schikorski, and this technique is currently unique to the UCC EM facility. Thus, we are well positioned to satisfy this growing need for EM as a research tool and to provide our students with diversity backgrounds with the opportunity of being trained in a powerful EM approach by highly qualified personnel. To address this need, we propose the Electron Microscopy Research Core (EMRC) as a part of the current SNRP application. Our objective for the EMRC will be to improve infrastructure, streamline sample preparation, add new EM techniques, and offer expanded services and training to new users. The EMRC Objectives are to provide high quality training and rsearch opportunities to faculty and students from diversity backgrounds and continue fostering effective collaborations with local and external researchers. Finally, the EMRC loner-term goal is to combine electron microscopy with super-resolution fiuorescence microscopy, and thus to bring to our community cutting edge capabilities for neuronal structural analysis at the nano-scale.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-N (03))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Universidad Central Del Caribe
United States
Zip Code
Vasin, Alexander; Zueva, Lidia; Torrez, Carol et al. (2014) Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. J Neurosci 34:10554-63
Ferchmin, P A; Andino, Myrna; Reyes Salaman, Rebeca et al. (2014) 4R-cembranoid protects against diisopropylfluorophosphate-mediated neurodegeneration. Neurotoxicology 44:80-90
Feliciano, Pedro; Andrade, Rodrigo; Bykhovskaia, Maria (2013) Synapsin II and Rab3a cooperate in the regulation of epileptic and synaptic activity in the CA1 region of the hippocampus. J Neurosci 33:18319-30