Paul- Project 1 Program Director/Principal Investigator (Last, First, Middle): MacLeish, Peter R. PROJECT SUMMARY (See instructions): In today's demanding 24-hour society the prevalence of sleep disorders continues to increase;however, the development of effective treatments for those disorders has not kept pace. One of the primary reasons is that many of the genetic and molecular pathways that underlie basic sleep processes are still undefined. Forward genetics approaches have yielded novel therapeutic targets and more effective treatments for a variety of diseases;however, similar milestones in the study of sleep disorders have been elusive. It has become apparent in the last several years that the genetics of sleep are complex, involving multiple genes and gene interactions with potentially small effect sizes. Larger-scale genomic approaches are likely to provide the necessary power uncover the genes that underlie sleep processes. In this application we propose a forward genetics approach that takes advantage of natural variation occurring in inbred mice. We have characterized 53 sleep-wake phenotypes in 14 inbred mouse strains in sleep-replete and sleep-deprived conditions. We propose to expand this dataset to add a minimum of 11 additional strains to provide sufficient statistical power for quantitative trait loci (QTL) analysis and positional cloning in subsequent recombinant hybrid crosses to transition from QTL to gene. This endeavor will combine a well-established paradigm of comparative phenotyping of a genetically tractable animal model with powerful genetic mapping tools to identify novel sleep regulatory genes. Consequently, these experiments will not only identify new sleep genes, they will also help verify and clarify previously mapped genes whose roles are not yet clearly defined. Ancillary benefits of this proposal include the potential identification of practical biomarkers of sleepiness, which is often cited as one of the most pressing needs in contemporary sleep research.

Public Health Relevance

Sleep disorders can be debilitating, are often co-morbid with somatic diseases, and are often predictive of mental illness. This project seeks to identify potential targets to improve the treatment of sleep disorders by using a phenomics approach to discover new sleep regulatory genes and to identify sleep regulatory properties of known genes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54NS083932-01
Application #
8585152
Study Section
Special Emphasis Panel (ZNS1-SRB-N (03))
Project Start
Project End
2018-06-30
Budget Start
2013-08-15
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$153,292
Indirect Cost
$44,958
Name
Morehouse School of Medicine
Department
Type
DUNS #
102005451
City
Atlanta
State
GA
Country
United States
Zip Code
30310
Piano, Ilaria; Baba, Kenkichi; Claudia Gargini et al. (2018) Heteromeric MT1/MT2 melatonin receptors modulate the scotopic electroretinogram via PKC? in mice. Exp Eye Res 177:50-54
Owino, Sharon; Sánchez-Bretaño, Aida; Tchio, Cynthia et al. (2018) Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J Pineal Res 64:
Huang, Yan; Leng, Tian-Dong; Inoue, Koichi et al. (2018) TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J Biol Chem 293:14393-14406
Morel, Caroline; Sherrin, Tessi; Kennedy, Norman J et al. (2018) JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory. J Neurosci 38:3708-3728
Klein, Pavel; Dingledine, Raymond; Aronica, Eleonora et al. (2018) Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia 59:37-66
Vann, Kiara T; Xiong, Zhi-Gang (2018) Acid-sensing ion channel 1 contributes to normal olfactory function. Behav Brain Res 337:246-251
Leng, Tiandong; Lin, Suizhen; Xiong, Zhigang et al. (2017) Lidocaine suppresses glioma cell proliferation by inhibiting TRPM7 channels. Int J Physiol Pathophysiol Pharmacol 9:8-15
Brager, Allison J; Heemstra, Lydia; Bhambra, Raman et al. (2017) Homeostatic effects of exercise and sleep on metabolic processes in mice with an overexpressed skeletal muscle clock. Biochimie 132:161-165
Wu, Bao-Ming; Leng, Tian-Dong; Inoue, Koichi et al. (2017) Effect of Redox-Modifying Agents on the Activity of Channelrhodopsin-2. CNS Neurosci Ther 23:216-221
Lin, Jun; Xiong, Zhi-Gang (2017) TRPM7 is a unique target for therapeutic intervention of stroke. Int J Physiol Pathophysiol Pharmacol 9:211-216

Showing the most recent 10 out of 51 publications