Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the US, yet currently there exist no treatments that can slow or prevent disease progression. A pathognomonic feature of COPD is the presence of sustained actions of bioactive mediators (e.g. matrix metalloproteinase (MMPs), and inflammasome-derived cytokines (IL-1 ?)) that produce chronic, unrelenting, airway inflammation and injury thereby contributing to the pathobiology of disease. We recently discovered a novel pathway for immunity through protein ubiquitination whereby a pro-inflammatory protein, called FBXO3 profoundly triggers cytokine secretion from cells (Nature Immunology 14:470-9, 2013). By targeting FBXO3, we developed a novel genus of small molecule inhibitors. Our pilot data indicate that (i) our lead drug, BC-1261, reduces circulating cytokines, alveolar inflammation, and prevents emphysema in a cigarette smoke exposure (CSE)-induced COPD murine model, (ii) that FBXO3 inhibitors inhibit CSE induced MMP and inflammasome activity, and that (iii) we have target validation where compared to wild-type FBXO3, COPD subjects with a naturally occurring protective, hypofunctional FBXO3 polymorphism (FBXO3V221I) have reduced cytokine levels, less severe emphysema, and disease progression. Hence, we will characterize BC-1261 as a new anti-inflammatory chemical entity for use in COPD preclinical models (UH2 Component), and demonstrate that BC-1261 exerts an optimal safety and drug product profile for in vivo use (UH3 Component). This application unveils a new molecular target (FBXO3) underlying COPD pathogenesis and a unique first-in-class compound targeting the ubiquitin-proteasome system for COPD. Execution of these studies will be the basis of a drug development program that will lead to a fundamental, paradigm-changing therapeutic advance for treatment of inflammation leading to an IND application setting the stage for a new translational initiative in COPD subjects.

Public Health Relevance

Emphysema and chronic bronchitis are major causes of death in the US and there are few treatments that prevent inflammation and slow disease progression. This inflammation is caused from the release of proteins, called cytokines and proteinases. We have discovered a new pathway of inflammation and discovered a unique drug that combats inflammation in emphysema. This discovery led us to propose a drug development program that eventually seeks approval by the FDA.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Exploratory/Developmental Cooperative Agreement Phase I (UH2)
Project #
1UH2HL123502-01
Application #
8751858
Study Section
Special Emphasis Panel (ZHL1-CSR-A (M1))
Program Officer
Postow, Lisa
Project Start
2014-09-22
Project End
2016-06-30
Budget Start
2014-09-22
Budget End
2015-06-30
Support Year
1
Fiscal Year
2014
Total Cost
$1,538,823
Indirect Cost
$539,587
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Liu, Yuan; Mallampalli, Rama K (2016) Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 36:105-19
Zou, Chunbin; Synan, Matthew J; Li, Jin et al. (2016) LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1. J Cell Sci 129:51-64
Han, SeungHye; Lear, Travis B; Jerome, Jacob A et al. (2015) Lipopolysaccharide Primes the NALP3 Inflammasome by Inhibiting Its Ubiquitination and Degradation Mediated by the SCFFBXL2 E3 Ligase. J Biol Chem 290:18124-33
Londino, James D; Gulick, Dexter; Isenberg, Jeffrey S et al. (2015) Cleavage of Signal Regulatory Protein α (SIRPα) Enhances Inflammatory Signaling. J Biol Chem 290:31113-25
Chen, Wei; Xiong, Sheng; Li, Jin et al. (2015) The ubiquitin E3 ligase SCF-FBXO24 recognizes deacetylated nucleoside diphosphate kinase A to enhance its degradation. Mol Cell Biol 35:1001-13
Liu, Yuan; Lear, Travis; Iannone, Olivia et al. (2015) The Proapoptotic F-box Protein Fbxl7 Regulates Mitochondrial Function by Mediating the Ubiquitylation and Proteasomal Degradation of Survivin. J Biol Chem 290:11843-52
Liu, Y; Lear, T; Zhao, Y et al. (2015) F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7. Cell Death Dis 6:e1630
Han, SeungHye; Mallampalli, Rama K (2015) The acute respiratory distress syndrome: from mechanism to translation. J Immunol 194:855-60
Han, SeungHye; Mallampalli, Rama K (2015) The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections. Ann Am Thorac Soc 12:765-74
Weathington, Nathaniel M; Mallampalli, Rama K (2014) Emerging therapies targeting the ubiquitin proteasome system in cancer. J Clin Invest 124:6-12

Showing the most recent 10 out of 15 publications