Deep sequencing of immune receptor rearrangements in lymphocyte populations provides a direct and sensitive tool to characterize and define antibody responses to HIV-1. Despite being found in -20% of chronically infected subjects, it has not yet been possible to induce broadly neutralizing antibodies (BnAbs) by vaccination. Moreover, there is increasing evidence that their expression may be controlled by a variety of immunoregulatory mechanisms and/or their maturation pathways are limited by the number of somatic hypermutations that must accrue. The B Cell Focus Team will isolate the native heavy and light chain antibodies using recombinant antibody technology, and this Antibody Sequencing Scientific Research Support Component will perform 454 deep sequencing to elucidate the full extent of depth and breadth of potentially protective HIV-1 antibody clonal lineages.
Specific Aims Aim 1,To define maturation pathways of BnAb HIV-1 antibodies by performing 454 deep sequencing of immunoglobulin (Ig) variable (V) heavy (H) rearrangements using B cells from HIV-1-infected individuals who are capable of making BnAbs.
Aim 2. To perform 454 deep sequencing of Ig VH rearrangements of B cell repertoires in Env- vaccinated individuals to define maturation pathways of potentially protective HIV-1 antibodies.
Aim 3. To perform 454 deep sequencing of immunoglobulin (Ig) variable (V) heavy (H) rearrangements in HI V-1-infected subjects who do and do not develop BnAbs, and to correlate this information with HIV-1 Env quasispecies complexity in these same individuals;this will allow us to determine to what extent neutralization escape mutations drive BnAb induction.

Public Health Relevance

Development of an HIV-1 vaccine able to induce antibodies active against a broad range of viral variants would be a major breakthrough in combating this disease. The Antibody Sequencing Support Component will use new DNA sequencing methods to thoroughly characterize broadly-neutralizing HlV-1 antibodies that arise in some infected patients, to determine their origin and pathways of development. Paired with sequencing of viruses present in such patients, and structural studies, our data should enable better-informed design of vaccines to stimulate B cells toward generation of broadly-neutralizing antibodies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
1UM1AI100645-01
Application #
8385844
Study Section
Special Emphasis Panel (ZAI1-JBS-A (M1))
Project Start
Project End
Budget Start
2012-07-15
Budget End
2013-06-30
Support Year
1
Fiscal Year
2012
Total Cost
$491,189
Indirect Cost
$14,250
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Finney, Joel; Kelsoe, Garnett (2018) Poly- and autoreactivity of HIV-1 bNAbs: implications for vaccine design. Retrovirology 15:53
Bradley, Todd; Peppa, Dimitra; Pedroza-Pacheco, Isabela et al. (2018) RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell 175:387-399.e17
Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E et al. (2018) Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses. MBio 9:
Pardi, Norbert; Hogan, Michael J; Porter, Frederick W et al. (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17:261-279
Bowder, Dane; Hollingsead, Haley; Durst, Kate et al. (2018) Contribution of the gp120 V3 loop to envelope glycoprotein trimer stability in primate immunodeficiency viruses. Virology 521:158-168
Madani, Navid; Princiotto, Amy M; Mach, Linh et al. (2018) A CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nat Commun 9:2363
Winawer, Melodie R; Griffin, Nicole G; Samanamud, Jorge et al. (2018) Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83:1133-1146
Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian et al. (2018) Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angew Chem Int Ed Engl 57:2072-2076
Prévost, Jérémie; Richard, Jonathan; Medjahed, Halima et al. (2018) Incomplete Downregulation of CD4 Expression Affects HIV-1 Env Conformation and Antibody-Dependent Cellular Cytotoxicity Responses. J Virol 92:
Prévost, Jérémie; Richard, Jonathan; Ding, Shilei et al. (2018) Envelope glycoproteins sampling states 2/3 are susceptible to ADCC by sera from HIV-1-infected individuals. Virology 515:38-45

Showing the most recent 10 out of 261 publications