The induction of both CD4+ and CD8+ T cell responses will be of central importance for vaccine protection against HIV-1. However, a number of major questions must be answered before a vaccine can be developed that optimizes these immune responses. While we know that an optimal vaccine-induced antibody response will require CD4+ T cell help, the nature of the help that will potentiate the highest titer and most durable antibody response remains unclear. Although CD8+ T cells have been shown to contribute to containment of HIV-1 replication, the effectiveness of this anti-viral response is limited by the extreme sequence variability of circulating HIV-1 strains and the propensity of the virus to mutate away from recognition by these effector cells. Truly effective CD8+ T cell containment of HIV-1 replication can only occur if T cell responses are generated through vaccination that can pre-empt the ability of the virus to escape from cellular immune recognition. The studies described in this focus address these central issues in HIV-1 vaccine development.
Specific Aims are as follows.
Aim 1. Evaluate different priming vectors for their ability to stimulate CD4+ Th2 cells and T follicular helper (Tfh) cells in macaques.
Aim 2. Characterize CD4+ Th2 cell and Tfh cell responses elicited by HIV-1 vaccines in humans Aim 3. Determine impact of naive repertoires on post-vaccination response of HIV-1 Env-specific CD4+T cells in humans.
Aim 4. Compare mosaic and conserved region vaccines for their induction of CD8+ T cell responses.
Aim 5. Apply new understanding of immunodominance to improve vaccine-elicited CD8+ T cell responses. The information gained in addressing these aims will lead directly to the design of the next generation of vaccines that will stimulate more protective CD4+ T cell and CD8+ T cell responses.

Public Health Relevance

An effective HIV vaccine will have to stimulate long lasting antibody response and cellular (T cell) immune responses. Two types of T cells are important, CD4+ T cells that help B cells to generated effective antibody and CD8+ T cells that act directly on virus infected cells. This focus will find new ways to generate both.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
United States
Zip Code
Chen, Jia; Frey, Gary; Peng, Hanqin et al. (2014) Mechanism of HIV-1 neutralization by antibodies targeting a membrane-proximal region of gp41. J Virol 88:1249-58
Hraber, Peter; Seaman, Michael S; Bailer, Robert T et al. (2014) Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. AIDS 28:163-9
Pollara, Justin; Bonsignori, Mattia; Moody, M Anthony et al. (2014) HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities. J Virol 88:7715-26
Verkoczy, Laurent; Diaz, Marilyn (2014) Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination. Curr Opin HIV AIDS 9:224-34
Hwang, Kwan-Ki; Trama, Ashley M; Kozink, Daniel M et al. (2014) IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria. PLoS One 9:e90725
Haynes, Barton F; Moody, M Anthony; Alam, Munir et al. (2014) Progress in HIV-1 vaccine development. J Allergy Clin Immunol 134:3-10; quiz 11
Holl, T Matt; Yang, Guang; Kuraoka, Masayuki et al. (2014) Enhanced antibody responses to an HIV-1 membrane-proximal external region antigen in mice reconstituted with cultured lymphocytes. J Immunol 192:3269-79
Roederer, Mario; Keele, Brandon F; Schmidt, Stephen D et al. (2014) Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature 505:502-8
Dennison, S Moses; Anasti, Kara M; Jaeger, Frederick H et al. (2014) Vaccine-induced HIV-1 envelope gp120 constant region 1-specific antibodies expose a CD4-inducible epitope and block the interaction of HIV-1 gp140 with galactosylceramide. J Virol 88:9406-17
Fera, Daniela; Schmidt, Aaron G; Haynes, Barton F et al. (2014) Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proc Natl Acad Sci U S A 111:10275-80

Showing the most recent 10 out of 48 publications