The Virus Biology Scientific Research Support Component will provide molecular approaches, reagents and service to CHAVI-ID investigators geared toward determining whether T/F viruses have unique biological properties that can be exploited as targets for rational immunogen design. The overall goal is to understand the protective humoral, cellular and innate responses to HIV-1 infection, and to study the structural biology and virology of the T/F virus as a pathogen and immunogen. The Virus Biology Support Component will also explore the impact of Env quasispecies evolution on the development of broadly neutralizing antibodies and characterize human and primate vaccine breakthrough infections to determine whether certain vaccine modalities influence the number, composition, and phenotype of transmitted viruses.
Specific Aims Aim 1: Determine whether T/F viruses have common biological properties that comprise favorable targets for vaccine intervention Aim 2: Examine how the evolution of the Env quasispecies contributes to the development of broad neutralizing antibodies Aim 3: Genetically characterize SIV/SHIV challenge stocks and perform sieve analyses of breakthrough infections in actively or passively immunized primates Aim 4: Perform sieve analyses of breakthrough infections in vaccinated humans. These studies will support the B Cell Research Focus as well as Computational, Antibody Sequencing, Structural Biology, Neutralizing Antibodies and NHP SCRCs and will help to find new targets in the HIV-1 transmission pathway that will sharpen the focus of vaccine development efforts.

Public Health Relevance

The Virus Biology Support Component has developed a novel set of virological approaches that are geared toward identifying vulnerabilities of HI V-1 T/F viruses and their progeny that can be exploited for immunogen design. Using these novel approaches, the SRSC will provide expertise and generate a comprehensive set of well-characterized reagents that will contribute vitally to the objectives of the overall CHAVI-ID consortium.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
United States
Zip Code
Chen, Jia; Frey, Gary; Peng, Hanqin et al. (2014) Mechanism of HIV-1 neutralization by antibodies targeting a membrane-proximal region of gp41. J Virol 88:1249-58
Hraber, Peter; Seaman, Michael S; Bailer, Robert T et al. (2014) Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. AIDS 28:163-9
Pollara, Justin; Bonsignori, Mattia; Moody, M Anthony et al. (2014) HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities. J Virol 88:7715-26
Verkoczy, Laurent; Diaz, Marilyn (2014) Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination. Curr Opin HIV AIDS 9:224-34
Hwang, Kwan-Ki; Trama, Ashley M; Kozink, Daniel M et al. (2014) IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria. PLoS One 9:e90725
Haynes, Barton F; Moody, M Anthony; Alam, Munir et al. (2014) Progress in HIV-1 vaccine development. J Allergy Clin Immunol 134:3-10; quiz 11
Holl, T Matt; Yang, Guang; Kuraoka, Masayuki et al. (2014) Enhanced antibody responses to an HIV-1 membrane-proximal external region antigen in mice reconstituted with cultured lymphocytes. J Immunol 192:3269-79
Roederer, Mario; Keele, Brandon F; Schmidt, Stephen D et al. (2014) Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature 505:502-8
Dennison, S Moses; Anasti, Kara M; Jaeger, Frederick H et al. (2014) Vaccine-induced HIV-1 envelope gp120 constant region 1-specific antibodies expose a CD4-inducible epitope and block the interaction of HIV-1 gp140 with galactosylceramide. J Virol 88:9406-17
Fera, Daniela; Schmidt, Aaron G; Haynes, Barton F et al. (2014) Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proc Natl Acad Sci U S A 111:10275-80

Showing the most recent 10 out of 48 publications