The Clinical Sample Acquisition and Repository Scientific Research Support Component (SRSC) will provide human clinical samples required for the studies outlined in the CHAVI-ID research plan. One key goal of CHAVI-ID is to study subjects that make broad neutralizing antibodies (BnAbs) in order to understand how best to induce BnABs. Another key goal is to receive vaccine trial samples from collaborating networks and to provide these samples to CHAVI-ID investigators. The clinical samples that are needed for the B, T and Innate cell studies as well as studies in the SRSCs, are those from chronically infected subjects who have been extensively characterized for their ability to make broad neutralizing antibodies (BnAbs), and samples from HIV-1 vaccine trials carried out by the HIV Vaccine Trials Network (HVTN), the Military HIV Research Program (MHRP) or the NIH Vaccine Research Center (VRC) as well as control samples. It is also important to have a sample repository comprised of both samples from control groups, samples from volunteers in vaccine trials as well as samples from both acute and chronic HIV-1 infection cohorts, such that when opportunities arise to test new hypotheses that require clinical material, CHAVI-ID research can move quickly ahead without stopping to write and get new clinical protocols approved.
Specific Aims Aim 1. To recruit and maintain the CHAVI-ID clinical sites for CHAVI-ID studies.
Aim 2. To maintain high quality specimen processing laboratories at the CHAVI-ID sites to ensure the highest quality sample acquisition.
Aim 3. To maintain CHAVI-ID repository sample storage facilities for distribution to CHAVI-ID investigators.

Public Health Relevance

Access to HIV-infected patients followed over time is essential to understanding the immunology of HlV-1 infection. Having experienced and skilled clinical research personnel is essential for obtaining and maintaining high quality clinical specimens to support the research that can lead to successful vaccine design.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
5UM1AI100645-02
Application #
8508883
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
2
Fiscal Year
2013
Total Cost
$366,812
Indirect Cost
$133,174
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Yates, Nicole L; deCamp, Allan C; Korber, Bette T et al. (2018) HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. J Virol 92:
Castillo-Menendez, Luis R; Nguyen, Hanh T; Sodroski, Joseph (2018) Conformational Differences Between Functional Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Trimers and Stabilized Soluble Trimers. J Virol :
Finney, Joel; Kelsoe, Garnett (2018) Poly- and autoreactivity of HIV-1 bNAbs: implications for vaccine design. Retrovirology 15:53
Bradley, Todd; Peppa, Dimitra; Pedroza-Pacheco, Isabela et al. (2018) RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell 175:387-399.e17
Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E et al. (2018) Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses. MBio 9:
Pardi, Norbert; Hogan, Michael J; Porter, Frederick W et al. (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17:261-279
Bowder, Dane; Hollingsead, Haley; Durst, Kate et al. (2018) Contribution of the gp120 V3 loop to envelope glycoprotein trimer stability in primate immunodeficiency viruses. Virology 521:158-168
Madani, Navid; Princiotto, Amy M; Mach, Linh et al. (2018) A CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nat Commun 9:2363
Winawer, Melodie R; Griffin, Nicole G; Samanamud, Jorge et al. (2018) Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83:1133-1146
Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian et al. (2018) Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angew Chem Int Ed Engl 57:2072-2076

Showing the most recent 10 out of 261 publications