The Neutralizing Antibody Scientific Research Support Component will provide essential laboratory and scientific support for CHAVI- by performing high throughput assessments of neutralizing activity against tier 1 and tier 2 reference HlV-1 strains in standardized and validated assays. In addition, we will map the epitopes of broadly neutralizing sera and mAbs, monitor vaccine-elicited nAb responses to identify improved immunogens, adjuvants and vectors, and delineate nAbs as a correlate of protection using breakthrough viruses from phase 2b trials.
Specific Aims Aim 1. To support CHAVI-ID research by defining the magnitude and breadth (M-B) of neutralizing activity in sera from select clinical groups, and by mapping the epitopes of broadly neutralizing sera.
Aim 2. To support CHAVI-ID research by screening memory B cell culture supernatants to identify nAb-producing B cells.
Aim 3. To support CHAVI-ID research by characterizing new mAbs for magnitude and breadth of neutralizing activity and epitope specificity.
Aim 4. To support CHAVI-ID research by monitoring the magnitude and breadth of vaccine-elicited nAbs in animals, human vaccinees, and by assessing vaccine sera neutralization with viruses from vaccine breakthrough infections in humans.

Public Health Relevance

Immunogens that elicit broadly cross-reactive neutralizing antibodies may be important for effective vaccination against HlV-1. Vaccines are the most effective and affordable intervention to control the spread of infectious diseases such as AIDS.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
5UM1AI100645-03
Application #
8681337
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
City
Durham
State
NC
Country
United States
Zip Code
27705
Pollara, Justin; Easterhoff, David; Fouda, Genevieve G (2017) Lessons learned from human HIV vaccine trials. Curr Opin HIV AIDS 12:216-221
Arakelyan, Anush; Fitzgerald, Wendy; King, Deborah F et al. (2017) Flow virometry analysis of envelope glycoprotein conformations on individual HIV virions. Sci Rep 7:948
Go, Eden P; Ding, Haitao; Zhang, Shijian et al. (2017) Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. J Virol 91:
Verkoczy, Laurent; Alt, Frederick W; Tian, Ming (2017) Human Ig knockin mice to study the development and regulation of HIV-1 broadly neutralizing antibodies. Immunol Rev 275:89-107
Haynes, Barton F; Mascola, John R (2017) The quest for an antibody-based HIV vaccine. Immunol Rev 275:5-10
Bonsignori, Mattia; Liao, Hua-Xin; Gao, Feng et al. (2017) Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol Rev 275:145-160
Kelsoe, Garnett; Haynes, Barton F (2017) What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Breaking through Immunity's Glass Ceiling. Cold Spring Harb Perspect Biol :
Herschhorn, Alon; Sodroski, Joseph (2017) An entry-competent intermediate state of the HIV-1 envelope glycoproteins. Receptors Clin Investig 4:
Ding, Shilei; Verly, Myriam M; Princiotto, Amy et al. (2017) Short Communication: Small-Molecule CD4 Mimetics Sensitize HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity by Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Nonhuman Primates. AIDS Res Hum Retroviruses 33:428-431
Espy, Nicole; Pacheco, Beatriz; Sodroski, Joseph (2017) Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor. Virology 508:90-107

Showing the most recent 10 out of 220 publications