The Clinical Sample Acquisition and Repository Scientific Research Support Component (SRSC) will provide human clinical samples required for the studies outlined in the CHAVI-ID research plan. One key goal of CHAVI-ID is to study subjects that make broad neutralizing antibodies (BnAbs) in order to understand how best to induce BnABs. Another key goal is to receive vaccine trial samples from collaborating networks and to provide these samples to CHAVI-ID investigators. The clinical samples that are needed for the B, T and Innate cell studies as well as studies in the SRSCs, are those from chronically infected subjects who have been extensively characterized for their ability to make broad neutralizing antibodies (BnAbs), and samples from HIV-1 vaccine trials carried out by the HIV Vaccine Trials Network (HVTN), the Military HIV Research Program (MHRP) or the NIH Vaccine Research Center (VRC) as well as control samples. It is also important to have a sample repository comprised of both samples from control groups, samples from volunteers in vaccine trials as well as samples from both acute and chronic HIV-1 infection cohorts, such that when opportunities arise to test new hypotheses that require clinical material, CHAVI-ID research can move quickly ahead without stopping to write and get new clinical protocols approved.
Specific Aims Aim 1. To recruit and maintain the CHAVI-ID clinical sites for CHAVI-ID studies.
Aim 2. To maintain high quality specimen processing laboratories at the CHAVI-ID sites to ensure the highest quality sample acquisition.
Aim 3. To maintain CHAVI-ID repository sample storage facilities for distribution to CHAVI-ID investigators.

Public Health Relevance

Access to HIV-infected patients followed over time is essential to understanding the immunology of HlV-1 infection. Having experienced and skilled clinical research personnel is essential for obtaining and maintaining high quality clinical specimens to support the research that can lead to successful vaccine design.

National Institute of Health (NIH)
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
United States
Zip Code
Chen, Jia; Frey, Gary; Peng, Hanqin et al. (2014) Mechanism of HIV-1 neutralization by antibodies targeting a membrane-proximal region of gp41. J Virol 88:1249-58
Hraber, Peter; Seaman, Michael S; Bailer, Robert T et al. (2014) Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. AIDS 28:163-9
Pollara, Justin; Bonsignori, Mattia; Moody, M Anthony et al. (2014) HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities. J Virol 88:7715-26
Verkoczy, Laurent; Diaz, Marilyn (2014) Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination. Curr Opin HIV AIDS 9:224-34
Hwang, Kwan-Ki; Trama, Ashley M; Kozink, Daniel M et al. (2014) IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria. PLoS One 9:e90725
Haynes, Barton F; Moody, M Anthony; Alam, Munir et al. (2014) Progress in HIV-1 vaccine development. J Allergy Clin Immunol 134:3-10; quiz 11
Holl, T Matt; Yang, Guang; Kuraoka, Masayuki et al. (2014) Enhanced antibody responses to an HIV-1 membrane-proximal external region antigen in mice reconstituted with cultured lymphocytes. J Immunol 192:3269-79
Roederer, Mario; Keele, Brandon F; Schmidt, Stephen D et al. (2014) Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature 505:502-8
Dennison, S Moses; Anasti, Kara M; Jaeger, Frederick H et al. (2014) Vaccine-induced HIV-1 envelope gp120 constant region 1-specific antibodies expose a CD4-inducible epitope and block the interaction of HIV-1 gp140 with galactosylceramide. J Virol 88:9406-17
Fera, Daniela; Schmidt, Aaron G; Haynes, Barton F et al. (2014) Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proc Natl Acad Sci U S A 111:10275-80

Showing the most recent 10 out of 48 publications