This application focuses on the potential for using ex vivo expanded autologous regulatory T cells (Tregs) in the treatment of autoimmune diseases. The central theme is that Tregs provide important protection against autoimmunity. Based on this theme, the central hypothesis is that Treg therapy may be a safe and effective approach to the treatment of diverse autoimmune diseases. To address this hypothesis, we propose two complementary projects. One project will examine Treg therapy in an antigen-non-specific autoimmune disease (systemic lupus erythematosus)(SLE), and one will examine Treg therapy in an antigen-specific autoimmune disease (pemphigus vulgaris)(PV). The selection of these two diseases affords us the following important opportunities: (i) to examine whether this therapeutic approach is generally applicable across clinically distinct autoimmune diseases;(ii) to compare safety, efficacy, and mechanism of action across both antigen-specific and antigen-non-specific autoimmune diseases;(iii) to compare polyclonal and antigen-specific Treg therapy in the same disease (PV);and (iv) to examine the same target tissue (skin) in both lupus and PV disease.
The specific aims are: Primary Project - Conduct a phase l-ll development program designed to test the feasibility, safety, and potential efficacy of Treg therapy in patients with cutaneous manifestations of lupus. Alternate Project - Conduct a phase l-ll development program designed to compare autologous polyclonal versus enriched antigen-specific Treg therapy in patients with PV. Through these projects, we aim to demonstrate the presence and persistence of transferred Tregs in blood and target tissue;perform T cell receptor sequencing to determine whether infused Tregs proliferate;assess biomarkers in blood and skin;and generate efficacy data to lay the foundation for eventual pivotal trials.

Public Health Relevance

The broad aim of the UCSF ACE program is to work collaboratively with other ACE sites to translate advances in immunology and molecular biology into practical, safe , and effective therapies for people with autoimmune diseases. Within this umbrella, the UCSF site will focus on examing the prospects of using autologous regulatory T cells as a novel appraoch to the treatment of autoimmune diseases. By so doing, we will be examining an approach that may have broad applicability across diverse autoimmune diseases.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Johnson, David R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Internal Medicine/Medicine
Schools of Medicine
San Francisco
United States
Zip Code
Vogel, Anna-Lena; Knier, Benjamin; Lammens, Katja et al. (2017) Deletional tolerance prevents AQP4-directed autoimmunity in mice. Eur J Immunol 47:458-469
Shimizu, Fumitaka; Schaller, Kristin L; Owens, Gregory P et al. (2017) Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica. Sci Transl Med 9:
Bennett, Jeffrey L; Owens, Gregory P (2017) Neuromyelitis Optica: Deciphering a Complex Immune-Mediated Astrocytopathy. J Neuroophthalmol 37:291-299
Alberga, Domenico; Trisciuzzi, Daniela; Lattanzi, Gianluca et al. (2017) Comparative molecular dynamics study of neuromyelitis optica-immunoglobulin G binding to aquaporin-4 extracellular domains. Biochim Biophys Acta 1859:1326-1334
Peschl, Patrick; Schanda, Kathrin; Zeka, Bleranda et al. (2017) Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. J Neuroinflammation 14:208
Rosenblum, Michael D; Way, Sing Sing; Abbas, Abul K (2016) Regulatory T cell memory. Nat Rev Immunol 16:90-101
Rosenberg, Jacob M; Price, Jordan V; Barcenas-Morales, Gabriela et al. (2016) Protein microarrays identify disease-specific anti-cytokine autoantibody profiles in the landscape of immunodeficiency. J Allergy Clin Immunol 137:204-213.e3
Liu, Yiting; Harlow, Danielle E; Given, Katherine S et al. (2016) Variable sensitivity to complement-dependent cytotoxicity in murine models of neuromyelitis optica. J Neuroinflammation 13:301
Lee, Jung-Rok; Haddon, D James; Wand, Hannah E et al. (2016) Multiplex giant magnetoresistive biosensor microarrays identify interferon-associated autoantibodies in systemic lupus erythematosus. Sci Rep 6:27623
Lee, Jung-Rok; Haddon, D James; Gupta, Nidhi et al. (2016) High-Resolution Analysis of Antibodies to Post-Translational Modifications Using Peptide Nanosensor Microarrays. ACS Nano 10:10652-10660