Cancer is the second leading cause of death in the United States after heart disease [1] and anticipated to cause 570,000 deaths in 2012 alone. This revised proposal (revisions/progress are italicized) is focused on the clinical sequencing of patients with rare cancers, which are defined as cancers with fewer than 15 per 100,000 individuals per year[2]. Of these diverse rare cancer types, sarcomas make up a significant fraction, including over 50 different subtypes that arise from cells of mesenchymal origin. This is in contrast to the much more common carcinomas, such as cancers of the lung, breast and colon, which arise from epithelial cells. Over the past five years, rapidly evolving technology in nucleic acid sequencing has enabled large scale sequencing projects of cancer genomes and transcriptomes have poised the research community to implement strategies for personalized oncology(3-5). Supporting this approach, in late 2011, the National Academy of Sciences (NAS) released a publication supporting a need to build and utilize a """"""""New Taxonomy of human disease"""""""" to facilitate precision medicine(6). """"""""Precision medicine"""""""" as defined in this report refers to tailoring of medical treatment to the individual characteristics of each patient. While the NAS projected this to play out over the next decade(s), we believe our proposal is directly aligned with this vision. The Human Genome Project established a high quality reference genome that provided a foundation for subsequent investigations of cancer genomics [3,4]. Over the past five years, rapidly evolving technology in nucleic acid sequencing enabled large scale sequencing projects of cancer genomes and transcriptomes with exhaustive identification of copy number changes, point mutations, rearrangements, insertions/deletions, and gene expression changes [5,6]. However, the clinical application of sequencing for individual patients presents unique challenges and has not yet been fully realized [7]. Project 2 provides the framework for processing tumor and normal biospecimens from sarcoma and other rare cancer patients enrolled on this protocol (See Project 1), sequencing components of their genome (including their """"""""expressed genome""""""""), and nominating """"""""actionable"""""""" or otherwise informative gene mutations and germline alterations. We plan to do this with the latest sequencing technology available to us, with high quality standards, in an expedited time frame, and under an efficient cost structure. Fig. 1 provides a general timeline of specimen processing, sequencing and analysis that will be the focus of Project 2. Since submission of the first version of this grant, we have established a robust pipeline for processing, tracking, and sequencing samples from advanced cancer patients. In fact, as outlined in Project 1, we have already enrolled and sequenced over 70 patients in our IRB approved clinical sequencing program (MI-ONCOSEQ) based on expansion of our pilot feasibility study published in the November 2011 issue of Science Translational Medicine[8]. Of the over 70 cancer patients enrolled, 10 had sarcoma while 19 had other rare cancers. In the revised application, as recommended, we decreased the scope of the project and rather than taking on advanced cancer of all types, we have focused the application on rare cancer types. Thus, as we are actively engaged in clinical sequencing, we are among the few centers in the country uniquely positioned to """"""""spread this technology"""""""", a decisive example being the commitment to develop parallel systems at Ohio State University under the leadership of Dr. Sameek Roychowdhury (formally a Lecturer and trainee in the previous proposal). We propose an """"""""integrative sequencing approach"""""""" utilizing whole exome and transcriptome sequencing to provide a relatively comprehensive landscape of the genetic alterations in individual tumor specimens. This approach will enable the detection of point mutations, insertions/deletions, gene fusions and rearrangements, amplifications/deletions, and outlier expressed genes. Furthermore, we will identify certain germline alterations that may also be relevant. The Sequencing Tumor Board (STB) will deliberate on actionable or informative findings and, when appropriate, disclosed to patients.

National Institute of Health (NIH)
National Human Genome Research Institute (NHGRI)
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
Application #
Study Section
Special Emphasis Panel (ZHG1-HGR-N)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Ann Arbor
United States
Zip Code
Datta, Jharna; Damodaran, Senthilkumar; Parks, Hannah et al. (2017) Akt Activation Mediates Acquired Resistance to Fibroblast Growth Factor Receptor Inhibitor BGJ398. Mol Cancer Ther 16:614-624
Davis, Elizabeth J; Wu, Yi-Mi; Robinson, Dan et al. (2017) Next generation sequencing of extraskeletal myxoid chondrosarcoma. Oncotarget 8:21770-21777
Gornick, Michele C; Scherer, Aaron M; Sutton, Erica J et al. (2017) Effect of Public Deliberation on Attitudes toward Return of Secondary Results in Genomic Sequencing. J Genet Couns 26:122-132
Tran, Dustin; Camelo-Piragua, Sandra; Gupta, Avneesh et al. (2017) Loss of CDKN1C in a Recurrent Atypical Teratoid/Rhabdoid Tumor. J Pediatr Hematol Oncol 39:e466-e469
Mody, Rajen J; Prensner, John R; Everett, Jessica et al. (2017) Precision medicine in pediatric oncology: Lessons learned and next steps. Pediatr Blood Cancer 64:
Ryan, Kerry A; De Vries, Raymond G; Uhlmann, Wendy R et al. (2017) Public's Views toward Return of Secondary Results in Genomic Sequencing: It's (Almost) All about the Choice. J Genet Couns 26:1197-1212
Bruzek, Amy K; Zureick, Andrew H; McKeever, Paul E et al. (2017) Molecular characterization reveals NF1 deletions and FGFR1-activating mutations in a pediatric spinal oligodendroglioma. Pediatr Blood Cancer 64:
O'Daniel, Julianne M; McLaughlin, Heather M; Amendola, Laura M et al. (2017) A survey of current practices for genomic sequencing test interpretation and reporting processes in US laboratories. Genet Med 19:575-582
Rasmussen, Luke V; Overby, Casey L; Connolly, John et al. (2016) Practical considerations for implementing genomic information resources. Experiences from eMERGE and CSER. Appl Clin Inform 7:870-82
Amendola, Laura M; Jarvik, Gail P; Leo, Michael C et al. (2016) Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium. Am J Hum Genet 98:1067-1076

Showing the most recent 10 out of 37 publications