The University of Louisville/Jewish Hospital has a remarkably vibrant basic and clinical research program in cardiovascular medicine, particularly in the area of stem cells and patients with heart failure (HF), left ventricular assist devices (LVADs), and ischemic cardiomyopathy. A highly cohesive and collegial team of investigators from the Divisions of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery has worked productively for many years in several multicenter trials, with outstanding performance. This existing clinical infrastructure, coupled with the strong preclinical research work conducted on cell-based therapies for several years, provides a superb platform for participation in the CCTRN as a Regional Clinical Center. The ability of our Center to carry out Phase l/ll studies of stem cells is exemplified by our success i performing the first in-human study of c-kit+ cardiac stem cells in patients with HF (SCIPIO). The same investigators and the infrastructure that made SCIPIO possible will be leveraged for the CCTRN studies. Here we propose SENECA (StEm cell treatmeNt for End stage CArdiac failure), in which we will test the feasibility and safety (Aim 1) and efficacy (Aim 2) of intracoronary delivery of CD34+ cells or very small embryonic-like cells (VSELs) to patients with end-stage ischemic cardiomyopathy (ICM) following implantation of an LVAD. Our hypothesis is that cell therapy will promote repair and regeneration of the injured myocardium, resulting in improved cardiac function, functional capacity, and overall quality of life, and recovery of myocardial function to a degree that permits consideration of LVAD explantation.
In Aim 3, we will identify patient characteristics and in vitro parameters of stem cell function that are associated with effectiveness (or lack thereof) of CD34+ cells and VSELs in improving LV function in vivo. SENECA will be the first study of VSELs in humans and the first controlled trial to test the effects of CD34+ cells in end-stage ischemic HF. Therefore, the results will be entirely novel and may provide a new option for patients who currently have a dismal prognosis. Thus, the potential impact of SENECA is considerable. No cell therapy study has ever been reported before in patients with LVADs and ICM, although these are the very patients who need it the most. Therefore, SENECA will address a major therapeutic gap in the management of cardiac patients. This trial has the potential to provide a novel clinical breakthrough in the treatment of end-stage ischemic heart disease.

Public Health Relevance

We have conducted preclinical studies of stem cells for several years. In 2009, we started SCIPIO, the first in-human study of c-kit+ cardiac stem cells, and one that demonstrates the ability of our Center to carry out Phase l/ll studies of cell therapy in humans effectively and successfully. This application builds on SCIPIO and on the superb program in advanced heart failure at Jewish Hospital. The results may pave the way for the use of novel cell-based therapies (CD34+cells and/or VSELs) in patients with ischemic cardiomyopathy.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-O (F2))
Program Officer
Ebert, Ray F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Louisville
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Bolli, Roberto (2017) Repeated Cell Therapy: A Paradigm Shift Whose Time Has Come. Circ Res 120:1072-1074
Guo, Yiru; Wysoczynski, Marcin; Nong, Yibing et al. (2017) Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Res Cardiol 112:18
Wysoczynski, Marcin; Guo, Yiru; Moore 4th, Joseph B et al. (2017) Myocardial Reparative Properties of Cardiac Mesenchymal Cells Isolated on the Basis of Adherence. J Am Coll Cardiol 69:1824-1838
Eschenhagen, Thomas; Bolli, Roberto; Braun, Thomas et al. (2017) Cardiomyocyte Regeneration: A Consensus Statement. Circulation 136:680-686
Tang, Xian-Liang; Li, Qianhong; Rokosh, Gregg et al. (2016) Long-Term Outcome of Administration of c-kit(POS) Cardiac Progenitor Cells After Acute Myocardial Infarction: Transplanted Cells Do not Become Cardiomyocytes, but Structural and Functional Improvement and Proliferation of Endogenous Cells Persist for at L Circ Res 118:1091-105
Moore 4th, Joseph B; Zhao, John; Keith, Matthew C L et al. (2016) The Epigenetic Regulator HDAC1 Modulates Transcription of a Core Cardiogenic Program in Human Cardiac Mesenchymal Stromal Cells Through a p53-Dependent Mechanism. Stem Cells 34:2916-2929
Salabei, Joshua K; Lorkiewicz, Pawel K; Mehra, Parul et al. (2016) Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. J Biol Chem 291:13634-48
Khan, Abdur Rahman; Farid, Talha A; Pathan, Asif et al. (2016) Impact of Cell Therapy on Myocardial Perfusion and Cardiovascular Outcomes in Patients With Angina Refractory to Medical Therapy: A Systematic Review and Meta-Analysis. Circ Res 118:984-93
Tokita, Yukichi; Tang, Xian-Liang; Li, Qianhong et al. (2016) Repeated Administrations of Cardiac Progenitor Cells Are Markedly More Effective Than a Single Administration: A New Paradigm in Cell Therapy. Circ Res 119:635-51
Keith, Matthew C L; Tang, Xian-Liang; Tokita, Yukichi et al. (2015) Safety of intracoronary infusion of 20 million C-kit positive human cardiac stem cells in pigs. PLoS One 10:e0124227

Showing the most recent 10 out of 17 publications