Uncontrolled hemorrhage is the major cause of death in adults exposed to severe trauma. Trauma induced coagulopathy (TIC) occurs after injury and shock, accompanied by a """"""""storm"""""""" of inflammatory and coagulation events leading to incapacitation of the hemostatic process. TICs compromise the hemostatic system because of dysregulated processes occurring on a systemic basis in which proteolytic systems destroy essential coagulation components. Previous studies have identified activated protein C-mediated destruction of the cofactor factor Va and implicated systemic fibrinolytic activity in which unregulated proteolysis destroys fibrinogen and parts of the plasma coagulation system. These terminal events observed in phlebotomy blood of TIC patients are caused by in vivo processes involving the proteins, cells and cytokines in blood and vascular tissues and tissue damage material entering the blood. The causes and breadth of TICs are not understood. This TACTIC proposal provides a comprehensive evaluation of the contributions of plasma proteins, blood cells, the vascular endothelium, the blood vessel, and extravascular tissue to TIC, making use of a unique infrastructure that includes already-funded DoD sites involved in trauma trials and Systems Biology. A comprehensive team approach by leading investigators in coagulation and inflammation research addresses the problem using a composite of in vitro and in vivo approaches to identify candidates responsible for TICs. Early translation of laboratory results into useful technology will be enabled by a set of 5 TACTIC trauma centers. Simultaneous with these studies, interactions with clinical centers engaged in DoD clinical trials will be developed in which research personnel at each center will be responsible for point-of-care studies and processing of blood samples. Collection techniques will utilize inhibitory cocktails to block ex vivo, post phlebotomy artifacts. Blood/plasma samples will be shipped to a secure repository and analyzed utilizing new technology to identify the natural history of TIC events. Continuation of TACTIC research projects will be dependent upon their potential utility for diagnosis and selection of therapy for trauma patients. Although uncontrolled bleeding is the major cause of death in people with severe traumatic injuries, the reasons for this bleeding are not completely understood. We plan to comprehensively describe the causes of trauma-related clotting and bleeding, and propose methods to diagnose the different causes and ultimately therapeutic interventions to prevent morbidity and mortality in traumatic settings.

Public Health Relevance

Although uncontrolled bleeding is the major cause of death in people with severe traumatic injuries, the reasons for this bleeding are not completely understood. We plan to comprehensively describe the causes of trauma-related clotting and bleeding, and propose methods to diagnose the different causes and ultimately therapeutic interventions to prevent morbidity and mortality in traumatic settings.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
5UM1HL120877-02
Application #
8743252
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Kindzelski, Andrei L
Project Start
2013-09-30
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Vermont & St Agric College
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Burlington
State
VT
Country
United States
Zip Code
05405
Subramaniam, Saravanan; Jurk, Kerstin; Hobohm, Lukas et al. (2017) Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 129:2291-2302
Li, R; Panckeri, K A; Fogarty, P F et al. (2017) Recombinant factor VIIa addition to haemophilic blood perfused over collagen/tissue factor can sufficiently bypass the factor IXa/VIIIa defect to rescue fibrin generation. Haemophilia 23:759-768
Kamikubo, Yuichi; Mendolicchio, G Loredana; Zampolli, Antonella et al. (2017) Selective factor VIII activation by the tissue factor-factor VIIa-factor Xa complex. Blood 130:1661-1670
Kunitake, Ryan C; Howard, Benjamin M; Kornblith, Lucy Z et al. (2017) Individual clotting factor contributions to mortality following trauma. J Trauma Acute Care Surg 82:302-308
Walsh, Mark; Shreve, Jacob; Thomas, Scott et al. (2017) Fibrinolysis in Trauma: ""Myth,"" ""Reality,"" or ""Something in Between"". Semin Thromb Hemost 43:200-212
Shen, Jian; Sampietro, Sara; Wu, Jie et al. (2017) Coordination of platelet agonist signaling during the hemostatic response in vivo. Blood Adv 1:2767-2775
Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B et al. (2017) Freeze-dried plasma enhances clot formation and inhibits fibrinolysis in the presence of tissue plasminogen activator similar to pooled liquid plasma. Transfusion 57:2007-2015
Shupp, Jeffrey W; Prior, Shannon M; Jo, Daniel Y et al. (2017) Analysis of factor XIa, factor IXa and tissue factor activity in burn patients. Burns :
Gajsiewicz, Joshua M; Smith, Stephanie A; Morrissey, James H (2017) Polyphosphate and RNA Differentially Modulate the Contact Pathway of Blood Clotting. J Biol Chem 292:1808-1814
Longden, Thomas A; Dabertrand, Fabrice; Koide, Masayo et al. (2017) Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20:717-726

Showing the most recent 10 out of 99 publications