The molecular basis of autoimmunity remains largely unknown. One hypothesis is that molecular abnormalities in the means by which the B cell immunoglobulin receptor is assembled or subsequently selected play a role in the tendency to develop autoantibodies. To examine this possibility, a technique has been developed to analyze the B cell receptor expressed by individual B cells without bias. Using this technique, the B cell repertoire expressed by normal individuals has been analyzed in detail. This normal data base has been employed for comparison to determine abnormalities in patients with autoimmune disease. The objective of the current study is to use single cell analysis to delineate the nature of abnormalities in the B cell immunoglobulin repertoire that might underlie autoimmune disease. The B cell repertoire of patients with systemic lupus erythematosus and Sjogrens's syndrome have been analyzed. The lupus repertoire shows distinct abnormalities, including evidence of enhanced mutational activity, increased receptor editing/revision and clonal expansion, consistent with intense T cell dependent stimulation. By contrast, the B cell repertoire of Sjogren's syndrome patients showed different abnormalities, including restriction of the repertoire, no enhanced mutational activity and limited receptor editing, as well as a pattern of mutations consistent with intense T cell independent stimulation. In neither disease was evidence of molecular abnormalities in receptor assembly obtained. Rather, the data are most consistent with distinct abnormalities in peripheral B cell stimulation, resulting in autoimmunity in these two autoimmune diseases. The capacity to analyze the B cell repertoire without bias has provided new insights into the nature of the abnormalities that predispose to autoimmunity. In systemic lupus erythematosus, intense T cell dependent stimulation appears to overwhelm normal mechanisms preventing autoimmunity, leading to the escape of B cells producing pathogenic autoantibodies. In Sjogren's syndrome, T cell independent B cell activation with ineffective receptor editing appears to result in the emergence of autoantibody formation. Additional studies have employed patients with known mutations, such as those with hyper-IGM syndrome or Xeroderma Pigmentosum to explore mechanisms involved in repertoire generation and somatic hypermutation.

Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Arthritis, Musculoskeletal, Skin Dis
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Longo, Nancy S; Lugar, Patricia L; Yavuz, Sule et al. (2009) Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting. Blood 113:3706-15
Abbasi, Fatima; Longo, Nancy S; Lipsky, Peter E et al. (2007) B-cell repertoire and clonal analysis in unaffected first degree relatives in familial chronic lymphocytic leukaemia kindred. Br J Haematol 139:820-3
Chen, Sheng; Sims, Gary P; Chen, Xiao Xiang et al. (2007) Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol 179:1634-47
Sims, Gary; Lipsky, Peter (2007) The existence of human TII B cells remains unproven: comment on the article by Daridon et al. Arthritis Rheum 56:1035-6
Hansen, Arne; Lipsky, Peter E; Dorner, Thomas (2007) B cells in Sjogren's syndrome: indications for disturbed selection and differentiation in ectopic lymphoid tissue. Arthritis Res Ther 9:218
Schmidt, Barbara M; Ribnicky, David M; Lipsky, Peter E et al. (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3:360-6
Ma, Jun; Dey, Moul; Yang, Hui et al. (2007) Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry 68:1172-8
Bleesing, Jack J; Souto-Carneiro, Margarida M; Savage, William J et al. (2006) Patients with chronic granulomatous disease have a reduced peripheral blood memory B cell compartment. J Immunol 176:7096-103
Longo, Nancy S; Lipsky, Peter E (2006) Why do B cells mutate their immunoglobulin receptors? Trends Immunol 27:374-80
Hansen, A; Reiter, K; Pruss, A et al. (2006) Dissemination of a Sjogren's syndrome-associated extranodal marginal-zone B cell lymphoma: circulating lymphoma cells and invariant mutation pattern of nodal Ig heavy- and light-chain variable-region gene rearrangements. Arthritis Rheum 54:127-37

Showing the most recent 10 out of 51 publications