Spontaneous beating of rabbit sinoatrial node cells (SANCs) is controlled by cAMP-mediated, protein kinase Adependent local subsarcolemmal ryanodine receptor Ca2+ releases (LCRs). LCRs activated an inward Na+/ Ca2+ exchange current that increases the terminal diastolic depolarization rate and, therefore, the spontaneous SANC beating rate. Basal cAMP in SANCs is elevated, suggesting that cAMP degradation by phosphodiesterases (PDEs) may be low. Surprisingly, total suppression of PDE activity with a broad-spectrum PDE inhibitor, 3-isobutylmethylxanthine (IBMX), produced a 9-fold increase in the cAMP level, doubled cAMP-mediated, protein kinase Adependent phospholamban phosphorylation, and increased SANC firing rate by 55%, indicating a high basal activity of PDEs in SANCs. A comparison of specific PDE1 to -5 inhibitors revealed that the specific PDE3 inhibitor, milrinone, accelerated spontaneous firing by 47% (effects of others were minor) and increased amplitude of L-type Ca2+ current (ICa,L) by 46%, indicating that PDE3 was the major constitutively active PDE in the basal state. PDE-dependent control of the spontaneous SANC firing was critically dependent on subsarcolemmal LCRs, ie, PDE inhibition increased LCR amplitude and size and decreased LCR period, leading to earlier and augmented LCR Ca2+ release, Na+/ Ca2+ exchange current, and an increase in the firing rate. When ryanodine receptors were disabled by ryanodine, neither IBMX nor milrinone was able to amplify LCRs, accelerate diastolic depolarization rate, or increase the SANC firing rate, despite preserved PDE inhibitioninduced augmentation of ICa,L amplitude. Thus, basal constitutive PDE activation provides a novel and powerful mechanism to decrease cAMP, limit cAMP-mediated, protein kinase Adependent increase of diastolic ryanodine receptor Ca2+ release, and restrict the spontaneous SANC beating rate. To study how PDE inhibition controls the SR Ca2+ refilling and LCR period we compared kinetics of SR Ca2+ refilling in control and after PDE inhibition. Phosphorylation of phospholamban (PLB) has been used as index of SR pumping rate and SR refilling was estimated by the time to 90% decay of the AP-initiated global cytosolic Ca2+ transient (T-90). Graded PLB phosphorylation by a broad-spectrum phosphodiesterase inhibitor (IBMX), specific phosphodiesterase-3 inhibitor (milrinone), or by specific PKA inhibitor peptide (PKI) were paralleled by proportional changes in T-90. Concomitant changes in T-90 and LCR period were highly correlated with changes in the spontaneous cycle length. Results obtained in isolated rabbit SANC were recently confirmed in the mouse isolated sinoatrial node (SAN). Suppression of PDE activity by the broad spectrum PDE inhibitor IBMX (100 micro mol/L) increased the spontaneous beating rate of mouse SAN from 37518 bpm to 6237 bpm (n=6, P<0.05). The positive chronotropic effects of IBMX indicate that an increase in intracellular cAMP level activates PKA and accelerates SAN automaticity, independent of external receptor stimulation. Stated in other terms, these data indicate constitutively active PDE in mouse SAN tissue, which degrades cAMP, leads to suppression of downstream cAMP-mediated PKA-dependent signaling. When PDE activity is blunted, PKA dependent signaling and the spontaneous beating rate are markedly enhanced in mouse SAN. This idea was tested using anti-PS16 PLB antibody and PLB total antibody. On average, IBMX increased the ratio of PS-16 PLB to total PLB by 51.238.87% comparing to its basal level (n=10 cells, P<0.05). Similar to isolated rabbit SANC, PDE inhibition in mouse SANC increased LCR occurrence, size and duration. In permeabilized mouse SANC, in conditions of tight control of cytoplasmic Ca2+, IBMX (5M), significantly (p<0.03) increased LCRs size (4.4 to 70.5m), duration (38 to 563.6ms), the Ca2+ signal of LCR ensemble (more than 2 fold), the percent of cells that produce periodic LCRs (from 72% in control to 100 % during IBMX application), the rhythmicity index (RI, assessed via autocorrelation function). Thus, suppression of PDE activity increases cAMP-mediated PKA-dependent phosphorylation, accelerates the SR Ca2+ refilling rate, decreases the LCR period, stimulates Ca2+ clock, and increases spontaneous beating rate of isolated SANC and SAN tissue.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Institute on Aging
Zip Code
Sirenko, Syevda; Maltsev, Victor A; Maltseva, Larissa A et al. (2014) Sarcoplasmic reticulum Ca2+ cycling protein phosphorylation in a physiologic Ca2+ milieu unleashes a high-power, rhythmic Ca2+ clock in ventricular myocytes: relevance to arrhythmias and bio-pacemaker design. J Mol Cell Cardiol 66:106-15
Liu, Jie; Sirenko, Syevda; Juhaszova, Magdalena et al. (2014) Age-associated abnormalities of intrinsic automaticity of sinoatrial nodal cells are linked to deficient cAMP-PKA-Ca(2+) signaling. Am J Physiol Heart Circ Physiol 306:H1385-97
Sirenko, Syevda; Yang, Dongmei; Li, Yue et al. (2013) Ca²⁺-dependent phosphorylation of Ca²⁺ cycling proteins generates robust rhythmic local Ca²⁺ releases in cardiac pacemaker cells. Sci Signal 6:ra6
Liu, Jie; Sirenko, Syevda; Juhaszova, Magdalena et al. (2011) A full range of mouse sinoatrial node AP firing rates requires protein kinase A-dependent calcium signaling. J Mol Cell Cardiol 51:730-9
Vinogradova, Tatiana M; Brochet, Didier X P; Sirenko, Syevda et al. (2010) Sarcoplasmic reticulum Ca2+ pumping kinetics regulates timing of local Ca2+ releases and spontaneous beating rate of rabbit sinoatrial node pacemaker cells. Circ Res 107:767-75
Vinogradova, Tatiana M; Lakatta, Edward G (2009) Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP-mediated PKA-dependent Ca2+ cycling with surface membrane channels. J Mol Cell Cardiol 47:456-74
Younes, Antoine; Lyashkov, Alexey E; Graham, David et al. (2008) Ca(2+) -stimulated basal adenylyl cyclase activity localization in membrane lipid microdomains of cardiac sinoatrial nodal pacemaker cells. J Biol Chem 283:14461-8