Calorie restriction (CR) delays age-related diseases in laboratory animals, and a small molecule that safely mimics its effects has been greatly sought after. There is evidence that resveratrol can mimic effects of CR in lower organisms and we have now concluded the first study of the aging intervention program. In mice, we found that resveratrol induces gene expression patterns in multiple tissues that are highly similar to those induced by CR. Moreover, elderly resveratrol-fed mice showed a marked reduction in signs of aging. These changes included reduced albuminuria, decreased inflammation and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preservation of bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at mid-life. Thus it is possible to mimic transcriptional aspects of DR and delay functional decline with a safe, orally available small molecule. Our findings indicate that resveratrol treatment starting from mid-life has a range of beneficial effects in mice, but suggest that it may not be an effective strategy to increase the longevity of normal ad libitum-fed animals. Long-term resveratrol treatment mimicked important physiological and transcriptional aspects of CR in vivo, and allowed treated animals to live healthier, more vigorous lives. In addition to improving insulin sensitivity and increasing survival in mice fed a high calorie diet, we found evidence that resveratrol improves cardiovascular function, bone density, motor coordination, and delays cataracts, even in non-obese rodents. Since cardiovascular disease is a major cause of age-related morbidity and mortality in humans but not mice, it is possible that a CR mimetics such as resveratrol could have an even greater impact on human health than on mice. However, resveratrol does not seem to mimic all of the salutary effects of DR in that its introduction into the diet of normal one year old mice did not increase longevity. When we tested resveratrol in non-human primates we were able to replicate most of the findings in rodents. For example, in a manuscript under review, we tested the effect of a 2-year resveratrol administration on the pro-inflammatory profile and insulin resistance caused by a high-fat, high-sugar (HFS) diet in white adipose tissue (WAT) from rhesus monkeys. Eighty mg/day of resveratrol for 12-month followed by 480 mg/day for the second year decreased adipocyte size, increased sirtuin 1 expression, decreased NF-kB activation and improved insulin sensitivity in visceral but not subcutaneous WAT from HFS-fed animals. These effects were reproduced in 3T3-L1 adipocytes cultured in media supplemented with serum from monkeys fed HFS +/- resveratrol diets. In conclusion, chronic administration of resveratrol exerts beneficial metabolic and inflammatory adaptations in visceral WAT from diet-induced obese monkeys. Another CR mimetic compound that we have tested is metformin. Metformin, a drug commonly prescribed to treat type-2 diabetes. We showed that treatment with metformin (0.1% w/w in diet) starting at one year of age extends healthspan and lifespan in male mice, while a higher dose (1% w/w) was toxic. Treatment with metformin mimicked some of the benefits of calorie restriction, such as improved physical performance, increased insulin sensitivity, and reduced LDL and cholesterol levels without a decrease in caloric intake. At a molecular level, metformin increased AMP-activated protein kinase activity and increased antioxidant protection, resulting in lower oxidative damage accumulation and chronic inflammation. Our results indicate that these specific factors may contribute to the beneficial effects of metformin administration on healthspan and lifespan. These findings are in agreement with current epidemiological data and further support metformin-based interventions to promote healthy aging.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Institute on Aging
Zip Code
Le Couteur, David G; Simpson, Stephen J; de Cabo, Rafael (2014) Are glycans the Holy Grail for biomarkers of aging? J Gerontol A Biol Sci Med Sci 69:777-8
Gonzalez-Freire, Marta; de Cabo, Rafael; Studenski, Stephanie A et al. (2014) The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle. Front Aging Neurosci 6:208
Khraiwesh, Husam; López-Domínguez, José A; Fernández del Río, Lucía et al. (2014) Mitochondrial ultrastructure and markers of dynamics in hepatocytes from aged, calorie restricted mice fed with different dietary fats. Exp Gerontol 56:77-88
Mitchell, Sarah J; Martin-Montalvo, Alejandro; Mercken, Evi M et al. (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6:836-43
Mercken, Evi M; Mitchell, Sarah J; Martin-Montalvo, Alejandro et al. (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13:787-96
de Cabo, Rafael; Carmona-Gutierrez, Didac; Bernier, Michel et al. (2014) The search for antiaging interventions: from elixirs to fasting regimens. Cell 157:1515-26
Scheibye-Knudsen, Morten; Mitchell, Sarah J; Fang, Evandro F et al. (2014) A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 20:840-55
Mattison, Julie A; Wang, Mingyi; Bernier, Michel et al. (2014) Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab 20:183-90
Iyer, Srividhya; Han, Li; Bartell, Shoshana M et al. (2014) Sirtuin1 (Sirt1) promotes cortical bone formation by preventing ?-catenin sequestration by FoxO transcription factors in osteoblast progenitors. J Biol Chem 289:24069-78
Lopez-Dominguez, Jose Alberto; Khraiwesh, Husam; Gonzalez-Reyes, Jose Antonio et al. (2014) Dietary Fat and Aging Modulate Apoptotic Signaling in Liver of Calorie-Restricted Mice. J Gerontol A Biol Sci Med Sci :

Showing the most recent 10 out of 24 publications