Changes in gene expression patterns are a hallmark of the aging process. Important insight into the mechanisms controlling such gene expression programs has come from the study of replicative senescence of cultured cells (eg, human diploid fibroblasts), which recapitulates many features of cells from aging individuals. This Project has traditionally studied changes in RBP expression and function during replicative senescence. It has also examined the influence of RBPs in replicative senescence by interventions to elevate or reduce RBP levels, followed by the analysis of changes in senescence-associated mRNA expression patterns. We have studied if a given RBP binds a senescence-associated mRNA using a variety of in vitro binding assays (biotin pulldown, RNA EMSA, etc) and assays to measure binding of endogenous molecules ribonucleoprotein immunoprecipitation (RIP) or crosslinking IP (CLIP). To investigate RBP function during senescence, we employ approaches such as RBP silencing, RBP overexpression, mutant RBP analysis, and RBP-associated mRNA identification (using microarrays, RNAseq, and RT-qPCR). To investigate whether RBPs affect the stability of target mRNAs during senescence, we measure the steady-state levels and half-lives of the mRNAs of interest as a function of RBP abundance. We investigate whether RBPs affect the translation of target mRNAs by studying the relative association of the mRNA with translating polysomes and by quantifying the nascent translation rates of the encoded proteins. We also employ reporter constructs to gain additional insight into the processes modulated by RBPs and use various senescence-associated markers to examine changes in the senescence phenotype. Over the past 12 months, this Project has examined the changes in gene expression that occur in human tissues as part of physiologic aging. Much of our effort in this Project has been directed at understanding how RBPs and noncoding RNAs affect the process of cellular senescence, which is increasingly recognized as underlying age-related changes in tissue physiology and pathology. The studies in this Project examine the RBPs and ncRNAs that modulate cellular senescence and the consequences of their influence on the senescent phenotype. Among the cell systems used for these studies, human diploid fibroblasts have been particularly informative. Senescence-associated RBPs. Following a long-established line of research in our group, we have continued the characterization of several RBPs implicated in aspects of cellular senescence, including the loss of proliferation, the impaired ability to respond to stress, and the implementation of a senescence-associated secretory phenotype (SASP). We discovered that the RBP NF90, which lowers the stability and translation of several mRNAs Tominaga-Yamanaka et al., Impact Aging 2012, associated with many mRNAs encoding SASP factors such as IL-6, IL-8, osteoprotegerin, GM-CSF, MCP-1, HCC4, Gro1, and Gro2. In young, proliferating fibroblasts, NF90 was abundant and inhibited the expression of mRNAs encoding SASP factors;by contrast, NF90 was low in senescent cells, allowing the levels of SASP factors MCP-1, GROa, IL-6, and IL-8 to rise. In collaborative studies, we have continued to investigate the roles of RBPs HuR and AUF1 in senescence, finding that the decreased nuclear export of HuR mRNA by HuR was linked to the loss of HuR in replicative senescence, that the interaction of HuR and AUF1 with the 3UTR (untranslated region) of p16 mRNA was inhibited when NSun2 methylated the p16 3UTR, leading to a rise in p16 levels Zhang et al., Nat Commun. 2012, and that the senescence-associated decline in CARM1, which methylates and hence activates HuR, was associated with the loss of HuR function in senescent cells Pang et al., BMC Mol Biol 2013. Senescence-associated ncRNAs. During the past twelve months, we have also continued to investigate the influence of ncRNAs in senescence. We have reported a number of specific microRNAs differentially expressed in senescent cells. During this evaluation period, we have also contributed several reviews to this emerging field, covering the topics of microRNAs that influence senescence and tumor suppression, the regulation of microRNA biogenesis in senescence, and the global influence of microRNAs on gene expression patterns in senescence Abdelmohsen et al., Ageing Res Reviews 2012. We have also initiated efforts to investigate the role of long ncRNAs (lncRNA) in senescence. A recent high-throughput search using RNA-Seq in collaboration with Dr. Beckers core facility, revealed numerous lncRNAs that are differentially expressed during cellular senescence. Among these senescence-associated lncRNAs, termed SAL-RNAs Abdelmohsen et al., Impact Aging 2013, we identified several transcripts that played a direct role in cellular senescence. SAL-RNAs are the subject of many follow-up studies in our laboratory that will be reported in the near future. In addition, we collaborated with the Prasanth laboratory in reporting that the lncRNA MALAT1 promoted cell proliferation and that silencing MALAT1 triggered cellular senescence Tripathi et al., PLoS Genetics, 2013. Tissue aging. Although our understanding of the post-transcriptional factors that influence senescence is advancing quickly, we still know relatively little about the RBPs and ncRNAs that affect the aging process itself. We recently reported that the levels of several RBPs that regulate translation and stability (HuR, AUF1, TIA-1, and TTP) in human tissues revealed that these RBPs are abundantly expressed in most tissues in all age groups. Expression was widespread in all normal tissues, including nondividing, terminally differentiated tissues, suggesting that these RBPs play life-long physiologic roles in tissue homeostasis.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Institute on Aging
Zip Code
Cai, Xiaoyu; Hu, Yuanyuan; Tang, Hao et al. (2016) RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. Oncotarget 7:19099-110
Kim, Jiyoung; Kim, Kyoung Mi; Noh, Ji Heon et al. (2016) Long noncoding RNAs in diseases of aging. Biochim Biophys Acta 1859:209-21
Noren Hooten, Nicole; Martin-Montalvo, Alejandro; Dluzen, Douglas F et al. (2016) Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell 15:572-81
Tang, Hao; Fan, Xiuqin; Xing, Junyue et al. (2015) NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation. Aging (Albany NY) 7:1143-58
Abdelmohsen, Kotb; Gorospe, Myriam (2015) Noncoding RNA control of cellular senescence. Wiley Interdiscip Rev RNA 6:615-29
Greco, Simona; Gorospe, Myriam; Martelli, Fabio (2015) Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol 83:142-55
Xing, Junyue; Yi, Jie; Cai, Xiaoyu et al. (2015) NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation. Mol Cell Biol 35:4043-52
Gunzburg, Menachem J; Sivakumaran, Andrew; Pendini, Nicole R et al. (2015) Cooperative interplay of let-7 mimic and HuR with MYC RNA. Cell Cycle 14:2729-33
Lee, Kwang-Pyo; Shin, Yeo Jin; Panda, Amaresh C et al. (2015) miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev 29:1605-17
Yoon, Je-Hyun; Jo, Myung Hyun; White, Elizabeth J F et al. (2015) AUF1 promotes let-7b loading on Argonaute 2. Genes Dev 29:1599-604

Showing the most recent 10 out of 47 publications