The base excision repair pathway is initiated by the action of a class of enzymes known as DNA glycosylases, which recognize and release the damaged base, and thus give specificity to the repair process. Mammalian cells carry two major DNA glycosylases for the repair of oxidized bases, oxoguanine DNA glycosylase (OGG1) and Endonuclease III homologue (NTH1). We found that OGG1 plays a crucial role in the repair of oxidized lesions in mitochondria and is probably the only DNA glycosylase for 8-oxoG removal in these organelles. All BER enzymes are encoded in the nucleus and transported to mitochondria;however there is very limited information on the regulation of mitochondrial BER. In mammalian mitochondria the mtDNA is found in a large protein-DNA complex known as the nucleoid. One of the most abundant protein components of mammalian nucleoids is the transcription factor TFAM, which has been postulated to have a structural function in compacting mtDNA into the nucleoid structure. Previously, we found that TFAM could inhibit BER proteins and mitochondrial pol gamma. We proposed that TFAM may be functioning like nuclear histones and therefore proposed that a TFAM remodeling protein must exit in mitochondria to allow for mtDNA metabolism. In separate studies, we documented that RECQL4 and CSB were present in mitochondria, thus we evaluated if each protein could relieve TFAM inhibition. We observed CSB, but not RECQL4, could display TFAM and alleviate its inhibition. We are continuing to search for and interrogate protein-interaction with TFAM in an attempt to more fully characterize mtDNA repair and metabolism

National Institute of Health (NIH)
National Institute on Aging (NIA)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Institute on Aging
Zip Code
Maynard, S; Keijzers, G; Hansen, A-M et al. (2015) Associations of subjective vitality with DNA damage, cardiovascular risk factors and physical performance. Acta Physiol (Oxf) 213:156-70
Akbari, Mansour; Keijzers, Guido; Maynard, Scott et al. (2014) Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair (Amst) 16:44-53
Kim, Seok-Jo; Cheresh, Paul; Williams, David et al. (2014) Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J Biol Chem 289:6165-76
Scheibye-Knudsen, Morten; Fang, Evandro Fei; Croteau, Deborah L et al. (2014) Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy 10:1468-9
Mercken, Evi M; Mitchell, Sarah J; Martin-Montalvo, Alejandro et al. (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13:787-96
Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang et al. (2014) Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol 98:3475-94
Fang, Evandro Fei; Scheibye-Knudsen, Morten; Brace, Lear E et al. (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157:882-96
Canugovi, Chandrika; Shamanna, Raghavendra A; Croteau, Deborah L et al. (2014) Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease. Neurobiol Aging 35:1293-300
Martin-Montalvo, Alejandro; Mercken, Evi M; Mitchell, Sarah J et al. (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192
Maynard, Scott; Schurman, Shepherd H; Harboe, Charlotte et al. (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2-10

Showing the most recent 10 out of 14 publications