The base excision repair pathway is initiated by the action of a class of enzymes known as DNA glycosylases, which recognize and release the damaged base, and thus give specificity to the repair process. Mammalian cells carry two major DNA glycosylases for the repair of oxidized bases, oxoguanine DNA glycosylase (OGG1) and Endonuclease III homologue (NTH1). We found that OGG1 plays a crucial role in the repair of oxidized lesions in mitochondria and is probably the only DNA glycosylase for 8-oxoG removal in these organelles. All BER enzymes are encoded in the nucleus and transported to mitochondria;however there is very limited information on the regulation of mitochondrial BER. In mammalian mitochondria the mtDNA is found in a large protein-DNA complex known as the nucleoid. One of the most abundant protein components of mammalian nucleoids is the transcription factor TFAM, which has been postulated to have a structural function in compacting mtDNA into the nucleoid structure. Previously, we found that TFAM could inhibit BER proteins and mitochondrial pol gamma. We proposed that TFAM may be functioning like nuclear histones and therefore proposed that a TFAM remodeling protein must exit in mitochondria to allow for mtDNA metabolism. In separate studies, we documented that RECQL4 and CSB were present in mitochondria, thus we evaluated if each protein could relieve TFAM inhibition. We observed CSB, but not RECQL4, could display TFAM and alleviate its inhibition. We are continuing to search for and interrogate protein-interaction with TFAM in an attempt to more fully characterize mtDNA repair and metabolism

National Institute of Health (NIH)
National Institute on Aging (NIA)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Institute on Aging
Zip Code
Fivenson, Elayne M; Lautrup, Sofie; Sun, Nuo et al. (2017) Mitophagy in neurodegeneration and aging. Neurochem Int 109:202-209
Fang, Evandro F; Waltz, Tyler B; Kassahun, Henok et al. (2017) Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci Rep 7:46208
Waltz, Tyler B; Fivenson, Elayne M; Morevati, Marya et al. (2017) Sarcopenia, aging and prospective interventional strategies. Curr Med Chem :
Fang, Evandro F; Bohr, Vilhelm A (2017) NAD(+): The convergence of DNA repair and mitophagy. Autophagy 13:442-443
Croteau, Deborah L; Fang, Evandro Fei; Nilsen, Hilde et al. (2017) NAD(+) in DNA repair and mitochondrial maintenance. Cell Cycle 16:491-492
Misiak, Magdalena; Vergara Greeno, Rebeca; Baptiste, Beverly A et al. (2017) DNA polymerase ? decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease. Aging Cell 16:162-172
Hou, Yujun; Song, Hyundong; Croteau, Deborah L et al. (2017) Genome instability in Alzheimer disease. Mech Ageing Dev 161:83-94
Karikkineth, Ajoy C; Scheibye-Knudsen, Morten; Fivenson, Elayne et al. (2017) Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res Rev 33:3-17
Sykora, P; Kanno, S; Akbari, M et al. (2017) DNA polymerase beta participates in mitochondrial DNA repair. Mol Cell Biol :
Hegde, Muralidhar L; Bohr, Vilhelm A; Mitra, Sankar (2017) DNA damage responses in central nervous system and age-associated neurodegeneration. Mech Ageing Dev 161:1-3

Showing the most recent 10 out of 67 publications