Our main aim in this project is to understand how mutations across many different domains of LRRK2 cause dominantly inherited Parkinsons disease. We previously reported that there was a diminishment of kinase function by a risk factor variant in LRRK2, G2385R. We know now that, mechanistically, the mutant version of LRRK2 is unstable likely due to misfolding at the C-terminus that promotes binding of chaperones. As this event is separated physically from the kinase domain, our working hypothesis is that the C-terminus and kinase domains interact with each other. We are currently extending this work to examine whether loss of function is also seen in the mouse version of the protein, which would allow us to test the idea of loss of function in vivo using knockin mice.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000948-06
Application #
8736662
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2013
Total Cost
$623,570
Indirect Cost
Name
National Institute on Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Blauwendraat, Cornelis; Reed, Xylena; Kia, Demis A et al. (2018) Frequency of Loss of Function Variants in LRRK2 in Parkinson Disease. JAMA Neurol :
Kluss, Jillian H; Conti, Melissa M; Kaganovich, Alice et al. (2018) Detection of endogenous S1292 LRRK2 autophosphorylation in mouse tissue as a readout for kinase activity. NPJ Parkinsons Dis 4:13
Mamais, Adamantios; Manzoni, Claudia; Nazish, Iqra et al. (2018) Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy Body pathology. Brain Res :
Price, Alice; Manzoni, Claudia; Cookson, Mark R et al. (2018) The LRRK2 signalling system. Cell Tissue Res 373:39-50
Madero-Pérez, Jesús; Fdez, Elena; Fernández, Belén et al. (2018) Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation. Mol Neurodegener 13:3
Liu, Weiwei; Liu, Xia'nan; Li, Yu et al. (2017) LRRK2 promotes the activation of NLRC4 inflammasome during Salmonella Typhimurium infection. J Exp Med 214:3051-3066
Rudenko, Iakov N; Kaganovich, Alice; Langston, Rebekah G et al. (2017) The G2385R risk factor for Parkinson's disease enhances CHIP-dependent intracellular degradation of LRRK2. Biochem J 474:1547-1558
Civiero, Laura; Cogo, Susanna; Kiekens, Anneleen et al. (2017) PAK6 Phosphorylates 14-3-3? to Regulate Steady State Phosphorylation of LRRK2. Front Mol Neurosci 10:417
Robak, Laurie A; Jansen, Iris E; van Rooij, Jeroen et al. (2017) Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain 140:3191-3203
Beilina, Alexandra; Cookson, Mark R (2016) Genes associated with Parkinson's disease: regulation of autophagy and beyond. J Neurochem 139 Suppl 1:91-107

Showing the most recent 10 out of 34 publications