Human respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are cytoplasmic enveloped RNA viruses of the pneumovirus family. Their genomes are single strands of negative-sense RNA of 15.2 kb (RSV) or 13.3 kb (HMPV) that encode 10 mRNAs and 11 unique proteins (RSV) or 8 mRNAs and 9 unique proteins (HMPV). Each virus encodes a nucleoprotein N, phosphoprotein P, matrix protein M, small hydrophobic protein SH, major glycoprotein G, fusion glycoprotein F, polymerase factors M2-1 and M2-2, and the polymerase protein L. In addition, RSV encodes 2 nonstructural proteins NS1 and NS2. Murine pneumonia virus (MPV, previously known as pneumonia virus of mice, PVM) is a close relative of RSV whose natural host is the mouse and which provides a convenient permissive animal model. We recently evaluated the strategy of codon-pair deoptimization (CPD) as a means to attenuate RSV. In this strategy, one or more ORFs are recoded to introduce under-represented codon-pairs, with no changes in amino acid coding, codon usage, or nucleotide composition. This can cause suboptimal translation, among other effects, resulting in attenuation. Recoding potentially can involve hundreds or thousands of changes and thus should be refractory to de-attenuation. We made 4 CPD derivatives of RSV: Min A (CPD NS1, NS2, N, P, M, and SH), Min B (CPD G and F), Min L (CPD L), and Min FLC (CPD all ORFs except M2-1 and M2-2). In vitro, the CPD RSVs replicated more slowly and to lower titers than wt RSV even at the normally permissive temperature of 32C, with the following order of growth efficiency: WT>Min L>Min A>Min FLC>Min B. At higher incubation temperatures, all 4 of the CPD viruses were temperature-sensitive (ts), with the order of increasing sensitivity Min A

Project Start
Project End
Budget Start
Budget End
Support Year
34
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
Zip Code
Hillyer, Philippa; Shepard, Rachel; Uehling, Megan et al. (2018) Differential Responses by Human Respiratory Epithelial Cell Lines to Respiratory Syncytial Virus Reflect Distinct Patterns of Infection Control. J Virol 92:
Brock, Linda G; Liu, Xiang; Liang, Bo et al. (2018) Murine Pneumonia Virus Expressing the Fusion Glycoprotein of Human Respiratory Syncytial Virus from an Added Gene Is Highly Attenuated and Immunogenic in Rhesus Macaques. J Virol 92:
Rima, Bert; Collins, Peter; Easton, Andrew et al. (2018) Problems of classification in the family Paramyxoviridae. Arch Virol 163:1395-1404
Amarasinghe, Gaya K; Aréchiga Ceballos, Nidia G; Banyard, Ashley C et al. (2018) Taxonomy of the order Mononegavirales: update 2018. Arch Virol 163:2283-2294
Amarasinghe, Gaya K; Bào, Y?míng; Basler, Christopher F et al. (2017) Taxonomy of the order Mononegavirales: update 2017. Arch Virol 162:2493-2504
Le Nouën, Cyril; McCarty, Thomas; Brown, Michael et al. (2017) Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure. Proc Natl Acad Sci U S A 114:E386-E395
Postler, Thomas S; Clawson, Anna N; Amarasinghe, Gaya K et al. (2017) Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Syst Biol 66:463-473
Rima, Bert; Collins, Peter; Easton, Andrew et al. (2017) ICTV Virus Taxonomy Profile: Pneumoviridae. J Gen Virol 98:2912-2913
Mehedi, Masfique; Smelkinson, Margery; Kabat, Juraj et al. (2017) Multicolor Stimulated Emission Depletion (STED) Microscopy to Generate High-resolution Images of Respiratory Syncytial Virus Particles and Infected Cells. Bio Protoc 7:
Mehedi, Masfique; Collins, Peter L; Buchholz, Ursula J (2017) A novel host factor for human respiratory syncytial virus. Commun Integr Biol 10:e1319025

Showing the most recent 10 out of 53 publications