This project is focused on the identification of physiologically critical functions of NF-kB transcription factors and their regulators in health and disease, as well as the molecular mechanisms underlying these functions. NF-kB is a family of related dimeric transcription factors that serve as primary intracellular mediators during innate and adaptive immune responses. In addition, and importantly, dysregulation of NF-kB plays a major role in inflammatory and autoimmune diseases as well as numerous tumors. It is thus imperative to understand the functions and mechanisms of action of NF-kB factors, as this will be required to devise appropriate strategies for therapeutic interventions aimed at curtailing dysregulated NF-kB. To identify physiologic roles we make use of mouse models engineered to lack components of the NF-kB transcription factor family or their regulators. These mouse models are used to identify NF-kB functions involved in the development of the immune system and they are subjected to challenge with pathogens and experimentally induced diseases in order to educe critical roles of NF-kB components in health and disease. Our work is focused on alternatively activated NF-kB factors and on Bcl-3. The alternative NF-kB activation pathway is initiated by a subset of TNF receptors. Bcl-3 is an atypical IkB family member which functions as nuclear regulator of NF-kB activity. Recently we discovered that alternatively activated NF-kB complexes and Bcl-3 co-operate in the development of medullary thymic epithelial cells, which in turn are required for proper negative selection (elimination) of self-reactive T cells. In FY 2010 we have obtained definitive proof that loss of the alternative pathway and Bcl-3 does indeed allow for the escape of self-reactive T cells into the periphery. In FY 2010 we have also generated the tools that will allow us to embark on a long-term effort to comprehensively investigate the roles of the alternative NF-kB pathway and of Bcl-3 in health and disease. We have generated mice in which the alternative pathway can be conditionally activated in various cell types. Previously we showed that BAFF-mediated alternative activation in B cells is essential for survival of B cells throughout peripheral development. In FY 2010 we have now determined that constitutive activation of this pathway in B cells leads to massive B cell hyperplasia, particularly in the gut. In FY 2010 we have also generated mice that are conditionally deficient in Bcl-3 and mice that are conditionally inducible to express Bcl-3. In FY 2010 we have identified a role for Bcl-3 in B cell differentiation. Both the alternative pathway and Bcl-3 have been implicated in B cell neoplasias in humans. The tools we have generated will allow us to dissect specific roles of the alternative pathway and Bcl-3 not only in neoplastic transformation of B cells, but also in B cell homeostasis, autoimmunity and thymic T cell selection.

Project Start
Project End
Budget Start
Budget End
Support Year
16
Fiscal Year
2010
Total Cost
$873,739
Indirect Cost
City
State
Country
Zip Code
Das, Nitin A; Carpenter, Andrea J; Yoshida, Tadashi et al. (2018) TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart. J Mol Cell Cardiol 121:107-123
Erikson, John M; Valente, Anthony J; Mummidi, Srinivas et al. (2017) Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. J Biol Chem 292:2345-2358
Tang, W; Wang, H; Ha, H L et al. (2016) The B-cell tumor promoter Bcl-3 suppresses inflammation-associated colon tumorigenesis in epithelial cells. Oncogene 35:6203-6211
Chen, Xi; Cao, Xinwei; Sun, Xiaohua et al. (2016) Bcl-3 regulates TGF? signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis 7:e2508
Kaileh, Mary; Vazquez, Estefania; MacFarlane 4th, Alexander W et al. (2016) mTOR-Dependent and Independent Survival Signaling by PI3K in B Lymphocytes. PLoS One 11:e0146955
Tassi, Ilaria; Claudio, Estefania; Wang, Hongshan et al. (2015) Adaptive immune-mediated host resistance to Toxoplasma gondii is governed by the NF-?B regulator Bcl-3 in dendritic cells. Eur J Immunol 45:1972-9
Tassi, Ilaria; Rikhi, Nimisha; Claudio, Estefania et al. (2015) The NF-?B regulator Bcl-3 modulates inflammation during contact hypersensitivity reactions in radioresistant cells. Eur J Immunol 45:1059-1068
Low, J T; Hughes, P; Lin, A et al. (2015) Impact of loss of NF-?B1, NF-?B2 or c-REL on SLE-like autoimmune disease and lymphadenopathy in Fas(lpr/lpr) mutant mice. Immunol Cell Biol :
O'Reilly, L A; Hughes, P; Lin, A et al. (2015) Loss of c-REL but not NF-?B2 prevents autoimmune disease driven by FasL mutation. Cell Death Differ 22:767-78
Kanno, Tomohiko; Kanno, Yuka; LeRoy, Gary et al. (2014) BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol 21:1047-57

Showing the most recent 10 out of 20 publications