This project is focused on the identification of physiologically critical functions and mechanisms of action of NF-kB transcription factors and their regulators in health and disease. NF-kB is a family of related dimeric transcription factors that serve as primary intracellular mediators during innate and adaptive immune responses. In addition, and importantly, aberrant regulation of NF-kB plays a major role in inflammatory and autoimmune diseases as well as in numerous tumors. It is thus imperative to understand the functions and mechanisms of action of individual NF-kB factors and their regulators, as this will be required to devise appropriate strategies for therapeutic interventions aimed at curtailing aberrantly regulated NF-kB in a precisely targeted manner. To identify physiologic roles and mechanisms we make use of mouse models engineered to lack components of the NF-kB transcription factor family or their regulators, as well as models in which the NF-kB factors can be selectively activated. Our work is focused on alternatively and classically activated NF-kB factors, and especially on Bcl-3. The alternative NF-kB activation pathway is normally initiated by a subset of TNF receptors. Bcl-3 is an atypical IkB family member that functions as nuclear regulator of NF-kB activity. In the recent past we discovered a critical role for Bcl-3 in the ability of dendritic cells to properly prime T cells in culture to proliferate in response antigen. Priming of T cells by dendritic cells is crucial to initiate protective adaptive immune responses to pathogens, such as to Toxoplasma gondii, an intracellular pathogen that constitutes serious health risks in immune-compromised patients. Mice lacking Bcl-3 specifically in dendritic cells succumb to infection due to inadequately primed T cell responses. We also recently demonstrated that Bcl-3 has critical functions in keratinocytes to help delimit hypersensitivity reactions. Importantly we also discovered that Bcl-3 plays an important role in controlling the plasticity of effector T cells and, crucially, is required for the pathogenicity of auto-reactive T cells in the context of experimental autoimmune encephalomyelitis, a model for Multiple Sclerosis, and in the context of T cell transfer-induced colitis, a model for Inflammatory Bowel Disease. In FY 2016 we have explored critical cell-specific roles for Bcl-3 in a chronic inflammation-associated cancer model. We have determined that in contrast to Bcl-3s pro-tumorigenic role in B cells, Bcl-3 has a tumor suppressive role in gut epithelial cells in the colitis-associated azoxymethane/dextran sulfate sodium colon cancer model. We further found that this suppressive effect was mediated at least in part via Bcl-3s role in delimiting recruitment of myeloid-derived suppressor cells, cells known to protect tumorigenic cells. These findings illuminate the physiologic significance of Bcl-3 and the context-dependent manner in which is functions.

Project Start
Project End
Budget Start
Budget End
Support Year
22
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
Zip Code
Das, Nitin A; Carpenter, Andrea J; Yoshida, Tadashi et al. (2018) TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart. J Mol Cell Cardiol 121:107-123
Erikson, John M; Valente, Anthony J; Mummidi, Srinivas et al. (2017) Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. J Biol Chem 292:2345-2358
Tang, W; Wang, H; Ha, H L et al. (2016) The B-cell tumor promoter Bcl-3 suppresses inflammation-associated colon tumorigenesis in epithelial cells. Oncogene 35:6203-6211
Chen, Xi; Cao, Xinwei; Sun, Xiaohua et al. (2016) Bcl-3 regulates TGF? signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis 7:e2508
Kaileh, Mary; Vazquez, Estefania; MacFarlane 4th, Alexander W et al. (2016) mTOR-Dependent and Independent Survival Signaling by PI3K in B Lymphocytes. PLoS One 11:e0146955
Tassi, Ilaria; Claudio, Estefania; Wang, Hongshan et al. (2015) Adaptive immune-mediated host resistance to Toxoplasma gondii is governed by the NF-?B regulator Bcl-3 in dendritic cells. Eur J Immunol 45:1972-9
Tassi, Ilaria; Rikhi, Nimisha; Claudio, Estefania et al. (2015) The NF-?B regulator Bcl-3 modulates inflammation during contact hypersensitivity reactions in radioresistant cells. Eur J Immunol 45:1059-1068
Low, J T; Hughes, P; Lin, A et al. (2015) Impact of loss of NF-?B1, NF-?B2 or c-REL on SLE-like autoimmune disease and lymphadenopathy in Fas(lpr/lpr) mutant mice. Immunol Cell Biol :
O'Reilly, L A; Hughes, P; Lin, A et al. (2015) Loss of c-REL but not NF-?B2 prevents autoimmune disease driven by FasL mutation. Cell Death Differ 22:767-78
Kanno, Tomohiko; Kanno, Yuka; LeRoy, Gary et al. (2014) BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol 21:1047-57

Showing the most recent 10 out of 20 publications