Mast cells (MCs), granulocytes, and lymphocytes are integral to the development of an allergic response. Allergic inflammation may also be generated through activation of receptors coupled to heterotrimeric G proteins (GPCRs). The purpose of this study is to understand mechanisms of G protein-mediated signal transduction in immune cells, with a focus on GPCR-mediated trafficking of leukocytes to sites of allergic inflammation. GPCRs activate a core pathway of heterotrimeric G proteins, which bind guanosine triphosphate (GTP) in exchange for guanosine diphosphate (GDP). The GTP-bound form of the G protein alpha subunit induces downstream signaling cascades, including intracellular calcium flux responsible for MC/basophil degranulation. This project focuses on a family of regulators of G protein signaling (RGS proteins), which inhibit the function of G alpha-i and G alpha-q, but not G alpha-s, proteins by increasing their GTPase activity. G alpha subunits oscillate between GDP- (inactive) and GTP- (active) bound forms based on ligand occupancy of the associated receptor. The GTPase accelerating (GAP) activity of RGS proteins limits the time of interaction of active G-alpha and its effectors, resulting in desensitization of GCPR signaling. Despite a growing body of knowledge concerning the biochemical mechanisms of RGS action, relatively little is known about the physiological role of these proteins in allergic inflammation. A major area of investigation is the recruitment of inflammatory cells to sites of inflammation. Chemokines are a major class of compounds acting on leukocyte GPCRs, which orchestrate immune cell trafficking, and RGS proteins including RGS5, RGS13, and RGS16 inhibit chemokine signaling by desensitizing GPCR signals. A second research area is the trafficking of mast cells and granulocytes during allergic responses. Many allergens contain intrinsic proteolytic activity and bind protease activated GPCRs. Although sensitization to protease allergens, such as papain, helminth infection, chronic allergic skin inflammation, and nasal rhinitis are associated with basophil recruitment to inflamed tissue or to draining lymph nodes (LNs), the precise role of basophils and mechanisms involved in their recruitment is incompletely understood. We are generating mouse strains containing mast cells or basophils hyper- or hyporesponsive to chemokines in order to study the contribution of these cells to various allergic responses. In FY16, we contributed key experiments to a collaborative study with Dr. Rosenberg (LAD/IIS) to characterize chemoattractant properties of an RNAse family member (mEar 11), which is expressed in macrophages and is upregulated by Th2 cytokines (IL-4/13). We demonstrated that mEar11 acts as a potent chemoattractant for macrophages. This property did not depend on mEar11 RNase activity. Further investigation of mEar11 in models of allergic disease may shed light on the function of these leukocytes at sites of tissue inflammation. In another collaborative project with Dr. Khasawneh (Western University), we demonstrated a critical negative regulatory function of RGS16 in platelet activation. Platelets from RGS16-deficient mice exhibited enhanced aggregration, granule secretion, and adhesion in response to GPCR ligands thrombin and CXCL12 as well as collagen. Patients with undefined immunodeficiencies and novel mutations in G proteins and/or RGS proteins are being characterized in collaborative studies with Drs. Orange and Su. A final area of investigation is the role of RGS5 in neutrophil trafficking. Using Rgs5-/- mice, we discovered in 2016 that neutrophils deficient in RGS5 do not traffic normally to sites of inflammation. Neutrophils isolated from Rgs5 gene deleted mice display enhanced chemotaxis to proinflammatory chemokines. Current studies are aimed at understanding the molecular mechanisms underlying this phenotype and determining whether the defects are leukocyte-intrinsic.

Project Start
Project End
Budget Start
Budget End
Support Year
19
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
Zip Code
Chan, Eunice C; Ren, Chunguang; Xie, Zhihui et al. (2018) Regulator of G protein signaling 5 restricts neutrophil chemotaxis and trafficking. J Biol Chem 293:12690-12702
Lyons, Jonathan J; Rosenberg, Helene F; Druey, Kirk M (2017) Editorial: Stressing out mast cells via CRF1. J Leukoc Biol 102:1284-1285
Druey, Kirk M (2017) Emerging Roles of Regulators of G Protein Signaling (RGS) Proteins in the Immune System. Adv Immunol 136:315-351
Xie, Zhihui; Chan, Eunice C; Druey, Kirk M (2016) R4 Regulator of G Protein Signaling (RGS) Proteins in Inflammation and Immunity. AAPS J 18:294-304
Karim, Zubair A; Alshbool, Fatima Z; Vemana, Hari Priya et al. (2016) CXCL12 regulates platelet activation via the regulator of G-protein signaling 16. Biochim Biophys Acta 1863:314-21
Hensch, Nicole R; Karim, Zubair A; Druey, Kirk M et al. (2016) RGS10 Negatively Regulates Platelet Activation and Thrombogenesis. PLoS One 11:e0165984
Yamada, Kelsey J; Barker, Tolga; Dyer, Kimberly D et al. (2015) Eosinophil-associated ribonuclease 11 is a macrophage chemoattractant. J Biol Chem 290:8863-75
Ding, Yanna; Li, Jun; Wu, Qi et al. (2013) IL-17RA is essential for optimal localization of follicular Th cells in the germinal center light zone to promote autoantibody-producing B cells. J Immunol 191:1614-24
Hurley, Amanda; Smith, Mindy; Karpova, Tatiana et al. (2013) Enhanced effector function of CD8(+) T cells from healthy controls and HIV-infected patients occurs through thrombin activation of protease-activated receptor 1. J Infect Dis 207:638-50
Wang, John H; New, James S; Xie, Shutao et al. (2013) Extension of the germinal center stage of B cell development promotes autoantibodies in BXD2 mice. Arthritis Rheum 65:2703-12

Showing the most recent 10 out of 19 publications